Methods for Scalar-on-Function Regression

被引:122
|
作者
Reiss, Philip T. [1 ,2 ,3 ]
Goldsmith, Jeff [4 ]
Shang, Han Lin [5 ]
Ogden, R. Todd [4 ,6 ]
机构
[1] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10003 USA
[2] NYU, Sch Med, Dept Populat Hlth, New York, NY 10003 USA
[3] Univ Haifa, Dept Stat, Haifa, Israel
[4] Columbia Univ, Mailman Sch Publ Hlth, Dept Stat, New York, NY USA
[5] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, Australia
[6] New York State Psychiat Inst & Hosp, New York, NY USA
基金
美国国家卫生研究院;
关键词
Functional additive model; functional generalised linear model; functional linear model; functional polynomial regression; functional single-index model; non-parametric functional regression; BAYESIAN BANDWIDTH ESTIMATION; GENERALIZED LINEAR-MODELS; TIME-SERIES PREDICTION; LIKELIHOOD RATIO TESTS; NONPARAMETRIC REGRESSION; ADDITIVE-MODELS; PRINCIPAL; SELECTION; COMPONENTS; DIMENSIONALITY;
D O I
10.1111/insr.12163
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images and so onare considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorising the basic model types as linear, non-linear and non-parametric. We discuss publicly available software packages and illustrate some of the procedures by application to a functional magnetic resonance imaging data set.
引用
收藏
页码:228 / 249
页数:22
相关论文
共 50 条
  • [31] An introduction to semiparametric function-on-scalar regression
    Bauer, Alexander
    Scheipl, Fabian
    Kuechenhoff, Helmut
    Gabriel, Alice-Agnes
    STATISTICAL MODELLING, 2018, 18 (3-4) : 346 - 364
  • [32] Variable selection in function-on-scalar regression
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    STAT, 2016, 5 (01): : 88 - 101
  • [33] Robust estimation for function-on-scalar regression models
    Miao, Zi
    Wang, Lihong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (05) : 1035 - 1055
  • [34] Variable selection in nonlinear function-on-scalar regression
    Ghosal, Rahul
    Maity, Arnab
    BIOMETRICS, 2023, 79 (01) : 292 - 303
  • [35] Quantile Function on Scalar Regression Analysis for Distributional Data
    Yang, Hojin
    Baladandayuthapani, Veerabhadran
    Rao, Arvind U. K.
    Morris, Jeffrey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 90 - 106
  • [36] Fast Function-on-Scalar Regression with Penalized Basis Expansions
    Reiss, Philip T.
    Huang, Lei
    Mennes, Maarten
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (01):
  • [37] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [38] Optimal function-on-scalar regression over complex domains
    Reimherr, Matthew
    Sriperumbudur, Bharath
    Bin Kang, Hyun
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 156 - 197
  • [39] Adaptive function-on-scalar regression with a smoothing elastic net
    Mirshani, Ardalan
    Reimherr, Matthew
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [40] Nonlinear function-on-scalar regression via functional universal approximation
    Luo, Ruiyan
    Qi, Xin
    BIOMETRICS, 2023, 79 (04) : 3319 - 3331