Methods for Scalar-on-Function Regression

被引:122
|
作者
Reiss, Philip T. [1 ,2 ,3 ]
Goldsmith, Jeff [4 ]
Shang, Han Lin [5 ]
Ogden, R. Todd [4 ,6 ]
机构
[1] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10003 USA
[2] NYU, Sch Med, Dept Populat Hlth, New York, NY 10003 USA
[3] Univ Haifa, Dept Stat, Haifa, Israel
[4] Columbia Univ, Mailman Sch Publ Hlth, Dept Stat, New York, NY USA
[5] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, Australia
[6] New York State Psychiat Inst & Hosp, New York, NY USA
基金
美国国家卫生研究院;
关键词
Functional additive model; functional generalised linear model; functional linear model; functional polynomial regression; functional single-index model; non-parametric functional regression; BAYESIAN BANDWIDTH ESTIMATION; GENERALIZED LINEAR-MODELS; TIME-SERIES PREDICTION; LIKELIHOOD RATIO TESTS; NONPARAMETRIC REGRESSION; ADDITIVE-MODELS; PRINCIPAL; SELECTION; COMPONENTS; DIMENSIONALITY;
D O I
10.1111/insr.12163
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images and so onare considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorising the basic model types as linear, non-linear and non-parametric. We discuss publicly available software packages and illustrate some of the procedures by application to a functional magnetic resonance imaging data set.
引用
收藏
页码:228 / 249
页数:22
相关论文
共 50 条
  • [41] Simultaneous variable selection, clustering, and smoothing in function-on-scalar regression
    Mehrotra, Suchit
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 180 - 199
  • [42] Confounder adjustment in single index function-on-scalar regression model
    Ding, Shengxian
    Zhou, Xingcai
    Lin, Jinguan
    Liu, Rongjie
    Huang, Chao
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 5679 - 5714
  • [43] High-Dimensional Spatial Quantile Function-on-Scalar Regression
    Zhang, Zhengwu
    Wang, Xiao
    Kong, Linglong
    Zhu, Hongtu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1563 - 1578
  • [44] Generalized multilevel function-on-scalar regression and principal component analysis
    Goldsmith, Jeff
    Zipunnikov, Vadim
    Schrack, Jennifer
    BIOMETRICS, 2015, 71 (02) : 344 - 353
  • [45] Online robust estimation and bootstrap inference for function-on-scalar regression
    Cheng, Guanghui
    Hu, Wenjuan
    Lin, Ruitao
    Wang, Chen
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [46] INACCURACIES OF MEASURING METHODS AND THEIR INFLUENCE ON THE REGRESSION FUNCTION
    SAUER, W
    ELECTROCOMPONENT SCIENCE AND TECHNOLOGY, 1984, 11 (03): : 243 - 247
  • [47] A robust functional partial least squares for scalar-on-multiple-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (04)
  • [48] A functional mixed model for scalar on function regression with application to a functional MRI study
    Ma, Wanying
    Xiao, Luo
    Liu, Bowen
    Lindquist, Martin A.
    BIOSTATISTICS, 2021, 22 (03) : 439 - 454
  • [49] FUNCTION-ON-SCALAR QUANTILE REGRESSION WITH APPLICATION TO MASS SPECTROMETRY PROTEOMICS DATA
    Liu, Yusha
    Li, Meng
    Morris, Jeffrey S.
    ANNALS OF APPLIED STATISTICS, 2020, 14 (02): : 521 - 541
  • [50] Residual Analysis in Generalized Function-on-Scalar Regression for an HVOF Spraying Process
    Kuhnt, Sonja
    Rehage, Andre
    Becker-Emden, Christina
    Tillmann, Wolfgang
    Hussong, Birger
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (06) : 2139 - 2150