Robust estimation for function-on-scalar regression models

被引:0
|
作者
Miao, Zi [1 ,2 ]
Wang, Lihong [3 ,4 ]
机构
[1] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional regression models; parameter estimation; robustness; variable selection; VARIABLE SELECTION;
D O I
10.1080/00949655.2023.2279191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [1] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [2] Online robust estimation and bootstrap inference for function-on-scalar regression
    Cheng, Guanghui
    Hu, Wenjuan
    Lin, Ruitao
    Wang, Chen
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [3] An introduction to semiparametric function-on-scalar regression
    Bauer, Alexander
    Scheipl, Fabian
    Kuechenhoff, Helmut
    Gabriel, Alice-Agnes
    STATISTICAL MODELLING, 2018, 18 (3-4) : 346 - 364
  • [4] Variable selection in function-on-scalar regression
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    STAT, 2016, 5 (01): : 88 - 101
  • [5] Rank estimation for the function-on-scalar model
    Sun, Jun
    Zhao, Mingtao
    Li, Ning
    Yang, Jing
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 1807 - 1823
  • [6] Rank estimation for the function-on-scalar model
    Jun Sun
    Mingtao Zhao
    Ning Li
    Jing Yang
    Computational Statistics, 2024, 39 : 1807 - 1823
  • [7] Variable selection in nonlinear function-on-scalar regression
    Ghosal, Rahul
    Maity, Arnab
    BIOMETRICS, 2023, 79 (01) : 292 - 303
  • [8] Fast Function-on-Scalar Regression with Penalized Basis Expansions
    Reiss, Philip T.
    Huang, Lei
    Mennes, Maarten
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (01):
  • [9] Nonlinear function-on-scalar regression via functional universal approximation
    Luo, Ruiyan
    Qi, Xin
    BIOMETRICS, 2023, 79 (04) : 3319 - 3331
  • [10] Simultaneous variable selection, clustering, and smoothing in function-on-scalar regression
    Mehrotra, Suchit
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 180 - 199