Robust estimation for function-on-scalar regression models

被引:0
|
作者
Miao, Zi [1 ,2 ]
Wang, Lihong [3 ,4 ]
机构
[1] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional regression models; parameter estimation; robustness; variable selection; VARIABLE SELECTION;
D O I
10.1080/00949655.2023.2279191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [11] Optimal function-on-scalar regression over complex domains
    Reimherr, Matthew
    Sriperumbudur, Bharath
    Bin Kang, Hyun
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 156 - 197
  • [12] Adaptive function-on-scalar regression with a smoothing elastic net
    Mirshani, Ardalan
    Reimherr, Matthew
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [13] High-Dimensional Spatial Quantile Function-on-Scalar Regression
    Zhang, Zhengwu
    Wang, Xiao
    Kong, Linglong
    Zhu, Hongtu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1563 - 1578
  • [14] Confounder adjustment in single index function-on-scalar regression model
    Ding, Shengxian
    Zhou, Xingcai
    Lin, Jinguan
    Liu, Rongjie
    Huang, Chao
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 5679 - 5714
  • [15] Residual Analysis in Generalized Function-on-Scalar Regression for an HVOF Spraying Process
    Kuhnt, Sonja
    Rehage, Andre
    Becker-Emden, Christina
    Tillmann, Wolfgang
    Hussong, Birger
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (06) : 2139 - 2150
  • [16] Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space
    Xie, Haihan
    Kong, Linglong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [17] Generalized multilevel function-on-scalar regression and principal component analysis
    Goldsmith, Jeff
    Zipunnikov, Vadim
    Schrack, Jennifer
    BIOMETRICS, 2015, 71 (02) : 344 - 353
  • [18] FUNCTION-ON-SCALAR QUANTILE REGRESSION WITH APPLICATION TO MASS SPECTROMETRY PROTEOMICS DATA
    Liu, Yusha
    Li, Meng
    Morris, Jeffrey S.
    ANNALS OF APPLIED STATISTICS, 2020, 14 (02): : 521 - 541
  • [19] Extracting information from functional connectivity maps via function-on-scalar regression
    Reiss, Philip T.
    Mennes, Maarten
    Petkova, Eva
    Huang, Lei
    Hoptman, Matthew J.
    Biswal, Bharat B.
    Colcombe, Stanley J.
    Zuo, Xi-Nian
    Milham, Michael P.
    NEUROIMAGE, 2011, 56 (01) : 140 - 148
  • [20] Analyzing time-varying spectral characteristics of speech with function-on-scalar regression
    Puggaard-Rode, Rasmus
    JOURNAL OF PHONETICS, 2022, 95