Robust estimation for function-on-scalar regression models

被引:0
|
作者
Miao, Zi [1 ,2 ]
Wang, Lihong [3 ,4 ]
机构
[1] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional regression models; parameter estimation; robustness; variable selection; VARIABLE SELECTION;
D O I
10.1080/00949655.2023.2279191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the functional linear models in which the dependent variable is functional and the predictors are scalar, robust regularization for simultaneous variable selection and regression parameter estimation is an important yet challenging issue. In this paper, we propose two types of regularized robust estimation methods. The first estimator adopts the ideas of reproducing kernel Hilbert space, least absolute deviation and group Lasso techniques. Based on the first method, the second estimator applies the pre-whitening technique and estimates the error covariance function by using functional principal component analysis. Simulation studies are conducted to examine the performance of the proposed methods in small sample sizes. The method is also applied to the Canadian weather data set, which consists of the daily average temperature and precipitation observed by 35 meteorological stations across Canada from 1960 to 1994. Numerical simulations and real data analysis show a good performance of the proposed robust methods for function-on-scalar models.
引用
收藏
页码:1035 / 1055
页数:21
相关论文
共 50 条
  • [21] Simultaneous variable selection and smoothing for high-dimensional function-on-scalar regression
    Parodi, Alice
    Reimherr, Matthew
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4602 - 4639
  • [22] A Highly-Efficient Group Elastic Net Algorithm with an Application to Function-On-Scalar Regression
    Boschi, Tobia
    Reimherr, Matthew
    Chiaromonte, Francesca
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [23] Permutation-based inference for function-on-scalar regression with an application in PET brain imaging
    Shieh, Denise
    Ogden, R. Todd
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (04) : 820 - 838
  • [24] ROBUST REGRESSION FUNCTION ESTIMATION
    HARDLE, W
    JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 14 (02) : 169 - 180
  • [25] Assessing systematic effects of stroke on motor control by using hierarchical function-on-scalar regression
    Goldsmith, Jeff
    Kitago, Tomoko
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (02) : 215 - 236
  • [26] On partial least-squares estimation in scalar-on-function regression models
    Saricam, Semanur
    Beyaztas, Ufuk
    Asikgil, Baris
    Shang, Han Lin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (12)
  • [27] The function-on-scalar LASSO with applications to longitudinal GWAS
    Barber, Rina Foygel
    Reimherr, Matthew
    Schill, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1351 - 1389
  • [28] A Dynamic Interaction Semiparametric Function-on-Scalar Model
    Liu, Hua
    You, Jinhong
    Cao, Jiguo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 360 - 373
  • [29] Robust scalar-on-function partial quantile regression
    Beyaztas, Ufuk
    Tez, Mujgan
    Lin Shang, Han
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1359 - 1377
  • [30] A robust scalar-on-function logistic regression for classification
    Mutis, Muge
    Beyaztas, Ufuk
    Simsek, Gulhayat Golbasi
    Shang, Han Lin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8538 - 8554