Methods for Scalar-on-Function Regression

被引:122
|
作者
Reiss, Philip T. [1 ,2 ,3 ]
Goldsmith, Jeff [4 ]
Shang, Han Lin [5 ]
Ogden, R. Todd [4 ,6 ]
机构
[1] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10003 USA
[2] NYU, Sch Med, Dept Populat Hlth, New York, NY 10003 USA
[3] Univ Haifa, Dept Stat, Haifa, Israel
[4] Columbia Univ, Mailman Sch Publ Hlth, Dept Stat, New York, NY USA
[5] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, Australia
[6] New York State Psychiat Inst & Hosp, New York, NY USA
基金
美国国家卫生研究院;
关键词
Functional additive model; functional generalised linear model; functional linear model; functional polynomial regression; functional single-index model; non-parametric functional regression; BAYESIAN BANDWIDTH ESTIMATION; GENERALIZED LINEAR-MODELS; TIME-SERIES PREDICTION; LIKELIHOOD RATIO TESTS; NONPARAMETRIC REGRESSION; ADDITIVE-MODELS; PRINCIPAL; SELECTION; COMPONENTS; DIMENSIONALITY;
D O I
10.1111/insr.12163
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images and so onare considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorising the basic model types as linear, non-linear and non-parametric. We discuss publicly available software packages and illustrate some of the procedures by application to a functional magnetic resonance imaging data set.
引用
收藏
页码:228 / 249
页数:22
相关论文
共 50 条
  • [1] A comparison of testing methods in scalar-on-function regression
    Tekbudak, Merve Yasemin
    Alfaro-Cordoba, Marcela
    Maity, Arnab
    Staicu, Ana-Maria
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 411 - 436
  • [2] A comparison of testing methods in scalar-on-function regression
    Merve Yasemin Tekbudak
    Marcela Alfaro-Córdoba
    Arnab Maity
    Ana-Maria Staicu
    AStA Advances in Statistical Analysis, 2019, 103 : 411 - 436
  • [3] Scalar-on-function local linear regression and beyond
    Ferraty, F.
    Nagy, S.
    BIOMETRIKA, 2022, 109 (02) : 439 - 455
  • [4] Estimator selection and combination in scalar-on-function regression
    Goldsmith, Jeff
    Scheipl, Fabian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 362 - 372
  • [5] Robust scalar-on-function partial quantile regression
    Beyaztas, Ufuk
    Tez, Mujgan
    Lin Shang, Han
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1359 - 1377
  • [6] A robust scalar-on-function logistic regression for classification
    Mutis, Muge
    Beyaztas, Ufuk
    Simsek, Gulhayat Golbasi
    Shang, Han Lin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8538 - 8554
  • [7] Selecting the derivative of a functional covariate in scalar-on-function regression
    Hooker, Giles
    Shang, Han Lin
    STATISTICS AND COMPUTING, 2022, 32 (03)
  • [8] Selecting the derivative of a functional covariate in scalar-on-function regression
    Giles Hooker
    Han Lin Shang
    Statistics and Computing, 2022, 32
  • [9] Testing for linearity in scalar-on-function regression with responses missing at random
    Febrero-Bande, Manuel
    Galeano, Pedro
    Garcia-Portugues, Eduardo
    Gonzalez-Manteiga, Wenceslao
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3405 - 3429
  • [10] The scalar-on-function modal regression for functional time series data
    Azzi, Amel
    Belguerna, Abderrahmane
    Laksaci, Ali
    Rachdi, Mustapha
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (02) : 503 - 526