A comparison of testing methods in scalar-on-function regression

被引:0
|
作者
Merve Yasemin Tekbudak
Marcela Alfaro-Córdoba
Arnab Maity
Ana-Maria Staicu
机构
[1] North Carolina State University,Department of Statistics
[2] North Carolina State University,Department of Statistics
[3] Universidad de Costa Rica,Escuela de Estadística
来源
关键词
Functional regression; Functional linear model; Nonparametric regression; Mixed-effects model; Hypothesis testing;
D O I
暂无
中图分类号
学科分类号
摘要
A scalar-response functional model describes the association between a scalar response and a set of functional covariates. An important problem in the functional data literature is to test nullity or linearity of the effect of the functional covariate in the context of scalar-on-function regression. This article provides an overview of the existing methods for testing both the null hypotheses that there is no relationship and that there is a linear relationship between the functional covariate and scalar response, and a comprehensive numerical comparison of their performance. The methods are compared for a variety of realistic scenarios: when the functional covariate is observed at dense or sparse grids and measurements include noise or not. Finally, the methods are illustrated on the Tecator data set.
引用
收藏
页码:411 / 436
页数:25
相关论文
共 50 条
  • [1] A comparison of testing methods in scalar-on-function regression
    Tekbudak, Merve Yasemin
    Alfaro-Cordoba, Marcela
    Maity, Arnab
    Staicu, Ana-Maria
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 411 - 436
  • [2] Methods for Scalar-on-Function Regression
    Reiss, Philip T.
    Goldsmith, Jeff
    Shang, Han Lin
    Ogden, R. Todd
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (02) : 228 - 249
  • [3] Testing for linearity in scalar-on-function regression with responses missing at random
    Febrero-Bande, Manuel
    Galeano, Pedro
    Garcia-Portugues, Eduardo
    Gonzalez-Manteiga, Wenceslao
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3405 - 3429
  • [4] Scalar-on-function local linear regression and beyond
    Ferraty, F.
    Nagy, S.
    BIOMETRIKA, 2022, 109 (02) : 439 - 455
  • [5] Estimator selection and combination in scalar-on-function regression
    Goldsmith, Jeff
    Scheipl, Fabian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 362 - 372
  • [6] Robust scalar-on-function partial quantile regression
    Beyaztas, Ufuk
    Tez, Mujgan
    Lin Shang, Han
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1359 - 1377
  • [7] A robust scalar-on-function logistic regression for classification
    Mutis, Muge
    Beyaztas, Ufuk
    Simsek, Gulhayat Golbasi
    Shang, Han Lin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8538 - 8554
  • [8] Selecting the derivative of a functional covariate in scalar-on-function regression
    Hooker, Giles
    Shang, Han Lin
    STATISTICS AND COMPUTING, 2022, 32 (03)
  • [9] Selecting the derivative of a functional covariate in scalar-on-function regression
    Giles Hooker
    Han Lin Shang
    Statistics and Computing, 2022, 32
  • [10] The scalar-on-function modal regression for functional time series data
    Azzi, Amel
    Belguerna, Abderrahmane
    Laksaci, Ali
    Rachdi, Mustapha
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024, 36 (02) : 503 - 526