A comparison of testing methods in scalar-on-function regression

被引:0
|
作者
Merve Yasemin Tekbudak
Marcela Alfaro-Córdoba
Arnab Maity
Ana-Maria Staicu
机构
[1] North Carolina State University,Department of Statistics
[2] North Carolina State University,Department of Statistics
[3] Universidad de Costa Rica,Escuela de Estadística
来源
关键词
Functional regression; Functional linear model; Nonparametric regression; Mixed-effects model; Hypothesis testing;
D O I
暂无
中图分类号
学科分类号
摘要
A scalar-response functional model describes the association between a scalar response and a set of functional covariates. An important problem in the functional data literature is to test nullity or linearity of the effect of the functional covariate in the context of scalar-on-function regression. This article provides an overview of the existing methods for testing both the null hypotheses that there is no relationship and that there is a linear relationship between the functional covariate and scalar response, and a comprehensive numerical comparison of their performance. The methods are compared for a variety of realistic scenarios: when the functional covariate is observed at dense or sparse grids and measurements include noise or not. Finally, the methods are illustrated on the Tecator data set.
引用
收藏
页码:411 / 436
页数:25
相关论文
共 50 条
  • [31] A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data
    Shang, Han Lin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 95 - 104
  • [32] Comparison of Nonparametric Function Estimation Methods for Discontinuous Regression Functions
    Park, Dongryeon
    KOREAN JOURNAL OF APPLIED STATISTICS, 2010, 23 (06) : 1245 - 1253
  • [33] Hypothesis Testing Using Factor Score Regression: A Comparison of Four Methods
    Devlieger, Ines
    Mayer, Axel
    Rosseel, Yves
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2016, 76 (05) : 741 - 770
  • [34] An introduction to semiparametric function-on-scalar regression
    Bauer, Alexander
    Scheipl, Fabian
    Kuechenhoff, Helmut
    Gabriel, Alice-Agnes
    STATISTICAL MODELLING, 2018, 18 (3-4) : 346 - 364
  • [35] Variable selection in function-on-scalar regression
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    STAT, 2016, 5 (01): : 88 - 101
  • [36] TESTING FOR ADDITIVITY OF A REGRESSION FUNCTION
    BARRY, D
    ANNALS OF STATISTICS, 1993, 21 (01): : 235 - 254
  • [37] A comparison of fuzzy regression methods for the estimation of the implied volatility smile function
    Muzzioli, S.
    Ruggieri, A.
    De Baets, B.
    FUZZY SETS AND SYSTEMS, 2015, 266 : 131 - 143
  • [38] Robust estimation for function-on-scalar regression models
    Miao, Zi
    Wang, Lihong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (05) : 1035 - 1055
  • [39] Variable selection in nonlinear function-on-scalar regression
    Ghosal, Rahul
    Maity, Arnab
    BIOMETRICS, 2023, 79 (01) : 292 - 303
  • [40] Quantile Function on Scalar Regression Analysis for Distributional Data
    Yang, Hojin
    Baladandayuthapani, Veerabhadran
    Rao, Arvind U. K.
    Morris, Jeffrey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 90 - 106