On dissipative phenomena of the interaction of Hamiltonian systems

被引:0
|
作者
Dinariev, OY
机构
[1] Shmidt United Institute of Earth Physics,
关键词
Hamiltonian; relaxation kernel; dissipative phenomena; integro-differential equation;
D O I
10.1023/A:1022012304018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics is under study of a composite Hamiltonian system that is the union of a finite-dimensional nonlinear system and an infinite-dimensional linear system with quadratic interaction Hamiltonian. The dynamics of the finite-dimensional subsystem is determined by a nonlinear integro-differential equation with a relaxation kernel. We prove existence and uniqueness theorems and find a priori estimates for a solution. Under some assumptions on the form of interaction, the solution to the finite-dimensional subsystem converges to one of the critical points of the effective Hamiltonian.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [21] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367
  • [22] A link between contractive and dissipative Hamiltonian systems
    Spirito, Mario
    Maschke, Bernhard
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2024, 58 (21): : 250 - 255
  • [23] DISSIPATIVE HAMILTONIAN-SYSTEMS - A UNIFYING PRINCIPLE
    KAUFMAN, AN
    PHYSICS LETTERS A, 1984, 100 (08) : 419 - 422
  • [24] Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems
    Alexander Figotin
    Jeffrey H. Schenker
    Journal of Statistical Physics, 2007, 128 : 969 - 1056
  • [25] Quantization of non-Hamiltonian and dissipative systems
    Tarasov, VE
    PHYSICS LETTERS A, 2001, 288 (3-4) : 173 - 182
  • [26] Differential–algebraic systems with dissipative Hamiltonian structure
    Volker Mehrmann
    Arjan van der Schaft
    Mathematics of Control, Signals, and Systems, 2023, 35 : 541 - 584
  • [27] Characterization of the dissipative mappings and their application to perturbations of dissipative-Hamiltonian systems
    Baghel, Mohit Kumar
    Gillis, Nicolas
    Sharma, Punit
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (06)
  • [28] Diffusion phenomena for partially dissipative hyperbolic systems
    Wirth, Jens
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 303 - 310
  • [29] Conservative and dissipative phenomena in thermodynamical systems stability
    Garcia-Sandoval, J. P.
    Hudon, N.
    Dochain, D.
    IFAC PAPERSONLINE, 2016, 49 (24): : 28 - 33
  • [30] Diffusion phenomena for partially dissipative hyperbolic systems
    Wirth, Jens
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 666 - 677