Quantization of non-Hamiltonian and dissipative systems

被引:55
|
作者
Tarasov, VE [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Theoret High Energy Phys Dept, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
quantum mechanics; canonical quantization; quantum dissipative systems;
D O I
10.1016/S0375-9601(01)00548-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested. Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with friction (generalized Lorenz-Rossler-Leipnik-Newton equation), the Fokker-Planck-type system and Lorenz-type system are considered. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [1] Quantization of Hamiltonian and non-Hamiltonian systems
    Rashkovskiy, Sergey A.
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 267 - 288
  • [2] Quantization of non-Hamiltonian physical systems
    Bolivar, AO
    PHYSICAL REVIEW A, 1998, 58 (06): : 4330 - 4335
  • [3] Semiclassical quantization of non-Hamiltonian dynamical systems without memory
    Vol, E. D.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [4] Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems
    Barth, A. M.
    Vagov, A.
    Axt, V. M.
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [5] Nontwist non-Hamiltonian systems
    Altmann, E. G.
    Cristadoro, G.
    Pazo, D.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [6] NON-HAMILTONIAN SCHRODINGER SYSTEMS
    Lucente, Sandra
    Montefusco, Eugenio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (03): : 761 - 770
  • [7] On the quantization of sectorially Hamiltonian dissipative systems
    Castagnino, M.
    Gadella, M.
    Lara, L. P.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 94 - 100
  • [8] HAMILTONIAN DESCRIPTION AND QUANTIZATION OF DISSIPATIVE SYSTEMS
    ENZ, CP
    FOUNDATIONS OF PHYSICS, 1994, 24 (09) : 1281 - 1292
  • [9] Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems
    Tuckerman, ME
    Liu, Y
    Ciccotti, G
    Martyna, GJ
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (04): : 1678 - 1702
  • [10] THE STOCHASTIC APPROACH FOR NON-HAMILTONIAN SYSTEMS
    TZANI, R
    THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 100 (01) : 916 - 920