On dissipative phenomena of the interaction of Hamiltonian systems

被引:0
|
作者
Dinariev, OY
机构
[1] Shmidt United Institute of Earth Physics,
关键词
Hamiltonian; relaxation kernel; dissipative phenomena; integro-differential equation;
D O I
10.1023/A:1022012304018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics is under study of a composite Hamiltonian system that is the union of a finite-dimensional nonlinear system and an infinite-dimensional linear system with quadratic interaction Hamiltonian. The dynamics of the finite-dimensional subsystem is determined by a nonlinear integro-differential equation with a relaxation kernel. We prove existence and uniqueness theorems and find a priori estimates for a solution. Under some assumptions on the form of interaction, the solution to the finite-dimensional subsystem converges to one of the critical points of the effective Hamiltonian.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [1] On Dissipative Phenomena of the Interaction of Hamiltonian Systems
    O. Yu. Dinariev
    Siberian Mathematical Journal, 2003, 44 : 61 - 72
  • [2] DISSIPATIVE SOLUTIONS TO HAMILTONIAN SYSTEMS
    Bianchini, Stefano
    Leccese, Giacomo Maria
    KINETIC AND RELATED MODELS, 2024, 17 (01) : 162 - 208
  • [3] DISSIPATIVE SYSTEMS AND BATEMAN HAMILTONIAN
    PEDROSA, IA
    BASEIA, B
    HADRONIC JOURNAL, 1983, 6 (06): : 1733 - 1741
  • [4] Dissipative discrete Hamiltonian systems
    Allahverdiev, BP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) : 1139 - 1155
  • [5] Stabilization of solutions of dissipative Hamiltonian systems
    Chill, Ralph
    Radzki, Wiktor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 750 - 758
  • [6] On the quantization of sectorially Hamiltonian dissipative systems
    Castagnino, M.
    Gadella, M.
    Lara, L. P.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 94 - 100
  • [7] Dynamics of Dissipative Systems with Hamiltonian Structures
    Zhang, Xiaoming
    Cao, Zhenbang
    Xie, Jianhua
    Li, Denghui
    Grebogi, Celso
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (14):
  • [8] Dissipative Linear Stochastic Hamiltonian Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    2018 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2018, : 227 - 232
  • [9] A PARADIGM FOR JOINED HAMILTONIAN AND DISSIPATIVE SYSTEMS
    MORRISON, PJ
    PHYSICA D, 1986, 18 (1-3): : 410 - 419
  • [10] Stability of hybrid dissipative Hamiltonian systems
    Zhu, Liying
    Wang, Yuzhen
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 70 - +