The Ramsey numbers for disjoint unions of cycles

被引:5
|
作者
Denley, T [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1016/0012-365X(94)00309-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As usual, for simple graphs G and H, let the Ramsey number r(G,H) be defined as the least number n such that for any graph K of order n, either G is a subgraph of K or H is a subgraph of (K) over bar. We shall establish the values of r(aC(5),bC(5)) and r(aC(7),bC(7)) almost precisely (where nG is the graph consisting of n vertex disjoint copies of G) extending the work of Mizuno and Sate, who proved similar results about r(aC(4),bC(4)). Our technique also allows us to find a general upper bound for the Ramsey number r(aC(n), aC(m)) for any a greater than or equal to 1,n,m greater than or equal to 3.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [41] Generalised Ramsey numbers for two sets of cycles
    Hansson, Mikael
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 86 - 94
  • [42] Ramsey Numbers of Large Even Cycles and Fans
    You, Chunlin
    Lin, Qizhong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (03):
  • [43] Ramsey numbers of cycles versus general graphs
    Haslegrave, John
    Hyde, Joseph
    Kim, Jaehoon
    Liu, Hong
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [44] Degree Ramsey numbers for cycles and blowups of trees
    Jiang, Tao
    Milans, Kevin G.
    West, Douglas B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 414 - 423
  • [45] Ramsey numbers of uniform loose paths and cycles
    Omidi, G. R.
    Shahsiah, M.
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1426 - 1434
  • [46] The multicolor size-Ramsey numbers of cycles
    Javadi, R.
    Miralaei, M.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 264 - 285
  • [47] Multicolored Bipartite Ramsey Numbers of Large Cycles
    Liu, Shao-qiang
    Peng, Yue-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 40 (2): : 347 - 357
  • [48] Bipartite anti-Ramsey numbers of cycles
    Axenovich, M
    Jiang, T
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 9 - 28
  • [49] The Ramsey numbers of wheels versus odd cycles
    Zhang, Yanbo
    Zhang, Yunqing
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2014, 323 : 76 - 80
  • [50] Canonical Ramsey numbers and properly colored cycles
    Jiang, Tao
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4247 - 4252