The Ramsey numbers for disjoint unions of cycles

被引:5
|
作者
Denley, T [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1016/0012-365X(94)00309-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As usual, for simple graphs G and H, let the Ramsey number r(G,H) be defined as the least number n such that for any graph K of order n, either G is a subgraph of K or H is a subgraph of (K) over bar. We shall establish the values of r(aC(5),bC(5)) and r(aC(7),bC(7)) almost precisely (where nG is the graph consisting of n vertex disjoint copies of G) extending the work of Mizuno and Sate, who proved similar results about r(aC(4),bC(4)). Our technique also allows us to find a general upper bound for the Ramsey number r(aC(n), aC(m)) for any a greater than or equal to 1,n,m greater than or equal to 3.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [21] The Ramsey numbers of two sets of cycles
    Wang, Longqin
    Chen, Yaojun
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 129 - 136
  • [22] Degree Ramsey numbers for even cycles
    Tait, Michael
    DISCRETE MATHEMATICS, 2018, 341 (01) : 104 - 108
  • [23] The Ramsey Numbers for A Triple of Long Cycles
    Agnieszka Figaj
    Tomasz Łuczak
    Combinatorica, 2018, 38 : 827 - 845
  • [24] RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES
    Nie, Jiaxi
    Verstraete, Jacques
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 103 - 113
  • [25] Multipartite Ramsey Numbers for Odd Cycles
    Gyarfas, Andras
    Sarkozyz, Gabor N.
    Schelp, Richard H.
    JOURNAL OF GRAPH THEORY, 2009, 61 (01) : 12 - 21
  • [26] Ramsey numbers of cycles in random graphs
    Araujo, Pedro
    Pavez-Signe, Matias
    Sanhueza-Matamala, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2024,
  • [27] The Ramsey Numbers for A Triple of Long Cycles
    Figaj, Agnieszka
    Luczak, Tomasz
    COMBINATORICA, 2018, 38 (04) : 827 - 845
  • [28] Generalized and geometric Ramsey numbers for cycles
    Károlyi, G
    Rosta, V
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 87 - 98
  • [29] ALL RAMSEY NUMBERS FOR CYCLES IN GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A3 - A3
  • [30] The Ramsey numbers of squares of paths and cycles
    Allen, Peter
    Cecchelli, Domenico Mergoni
    Roberts, Barnaby
    Skokan, Jozef
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):