Degree Ramsey numbers for even cycles

被引:4
|
作者
Tait, Michael [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Ramsey number; Degree Ramsey number; Even cycle; Generalized polygon; BOUNDED DEGREE; GRAPHS; SIZE; TREES; SUBGRAPHS;
D O I
10.1016/j.disc.2017.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H -> G denote that any s-coloring of E(H) contains a monochromatic G. The degree Ramsey number of a graph G, denoted by R Delta(G, s), is min{Delta(H) : H -> G}. We consider degree Ramsey numbers where G is a fixed even cycle. Kinnersley, Milans, and West showed that R-Delta(C-2k, s) >= 2s, and Kang and Perarnau showed that R-Delta(C-4, s) = Theta(s(2)). Our main result is that R-Delta(C-6, s) = Theta(S-3/2) and R-Delta(C-10, s) = Theta(S-5/4). Additionally, we substantially improve the lower bound for R-Delta(C-2k, s) for general k. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 50 条
  • [1] Ramsey Numbers of Large Even Cycles and Fans
    You, Chunlin
    Lin, Qizhong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (03):
  • [2] On multicolor Ramsey numbers for even cycles in graphs
    Sun Yongqi
    Yang Yuansheng
    Jiang Baoqi
    Lin Xiaohui
    Lei, Shi
    ARS COMBINATORIA, 2007, 84 : 333 - 343
  • [3] Multicolour Ramsey numbers of paths and even cycles
    Davies, E.
    Jenssen, M.
    Roberts, B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 63 : 124 - 133
  • [4] Degree Ramsey numbers for cycles and blowups of trees
    Jiang, Tao
    Milans, Kevin G.
    West, Douglas B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 414 - 423
  • [5] The Ramsey numbers for cycles versus wheels of even order
    Zhang, Lianmin
    Chen, Yaojun
    Cheng, T. C. Edwin
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 254 - 259
  • [6] Multi-color Ramsey numbers of even cycles
    Li, Yusheng
    Lih, Ko-Wei
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 114 - 118
  • [7] Improved bounds on the multicolor Ramsey numbers of paths and even cycles
    Knierim, Charlotte
    Su, Pascal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [8] New lower bound for multicolor Ramsey numbers for even cycles
    Dzido, T
    Nowik, A
    Szuca, P
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [9] A conjecture on Gallai-Ramsey numbers of even cycles and paths
    Song, Zi-Xia
    Zhang, Jingmei
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 296 - 308
  • [10] Ramsey numbers of odd cycles versus larger even wheels
    Alweiss, Ryan
    DISCRETE MATHEMATICS, 2018, 341 (04) : 981 - 989