Degree Ramsey numbers for even cycles

被引:4
|
作者
Tait, Michael [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Ramsey number; Degree Ramsey number; Even cycle; Generalized polygon; BOUNDED DEGREE; GRAPHS; SIZE; TREES; SUBGRAPHS;
D O I
10.1016/j.disc.2017.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H -> G denote that any s-coloring of E(H) contains a monochromatic G. The degree Ramsey number of a graph G, denoted by R Delta(G, s), is min{Delta(H) : H -> G}. We consider degree Ramsey numbers where G is a fixed even cycle. Kinnersley, Milans, and West showed that R-Delta(C-2k, s) >= 2s, and Kang and Perarnau showed that R-Delta(C-4, s) = Theta(s(2)). Our main result is that R-Delta(C-6, s) = Theta(S-3/2) and R-Delta(C-10, s) = Theta(S-5/4). Additionally, we substantially improve the lower bound for R-Delta(C-2k, s) for general k. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 50 条
  • [31] Generalized and geometric Ramsey numbers for cycles
    Károlyi, G
    Rosta, V
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 87 - 98
  • [32] ALL RAMSEY NUMBERS FOR CYCLES IN GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A3 - A3
  • [33] The Ramsey numbers of squares of paths and cycles
    Allen, Peter
    Cecchelli, Domenico Mergoni
    Roberts, Barnaby
    Skokan, Jozef
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [34] RAMSEY NUMBERS FOR UNIONS OF SOME CYCLES
    MIZUNO, H
    SATO, I
    DISCRETE MATHEMATICS, 1988, 69 (03) : 283 - 294
  • [35] Multicolor Ramsey numbers for Berge cycles
    DeStefano, Zachary
    Mahon, Hannah
    Simutis, Frank
    Tait, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [36] Stability and Ramsey numbers for cycles and wheels
    Sanhueza-Matamala, Nicolas
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1557 - 1565
  • [37] The Ramsey number for a triple of long even cycles
    Figaj, Agnieszka
    Luczak, Tomasz
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (04) : 584 - 596
  • [38] Threshold Ramsey multiplicity for paths and even cycles
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    Wei, Fan
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 107
  • [39] On degree anti-Ramsey numbers
    Gilboa, Shoni
    Hefetz, Dan
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 60 : 31 - 41
  • [40] Ramsey numbers for degree monotone paths
    Caro, Yair
    Yuster, Raphael
    Zarb, Christina
    DISCRETE MATHEMATICS, 2017, 340 (02) : 124 - 131