Degree Ramsey numbers for even cycles

被引:4
|
作者
Tait, Michael [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Ramsey number; Degree Ramsey number; Even cycle; Generalized polygon; BOUNDED DEGREE; GRAPHS; SIZE; TREES; SUBGRAPHS;
D O I
10.1016/j.disc.2017.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H -> G denote that any s-coloring of E(H) contains a monochromatic G. The degree Ramsey number of a graph G, denoted by R Delta(G, s), is min{Delta(H) : H -> G}. We consider degree Ramsey numbers where G is a fixed even cycle. Kinnersley, Milans, and West showed that R-Delta(C-2k, s) >= 2s, and Kang and Perarnau showed that R-Delta(C-4, s) = Theta(s(2)). Our main result is that R-Delta(C-6, s) = Theta(S-3/2) and R-Delta(C-10, s) = Theta(S-5/4). Additionally, we substantially improve the lower bound for R-Delta(C-2k, s) for general k. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 50 条
  • [21] Local Ramsey numbers for copies of cycles
    Bielak, H
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 29 - 42
  • [22] Gallai-Ramsey numbers for cycles
    Fujita, Shinya
    Magnant, Colton
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1247 - 1254
  • [23] RAMSEY NUMBERS FOR PATHS AND CYCLES IN GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A44 - A45
  • [24] The Ramsey numbers of two sets of cycles
    Wang, Longqin
    Chen, Yaojun
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 129 - 136
  • [25] The Ramsey numbers for disjoint unions of cycles
    Denley, T
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 31 - 44
  • [26] The Ramsey Numbers for A Triple of Long Cycles
    Agnieszka Figaj
    Tomasz Łuczak
    Combinatorica, 2018, 38 : 827 - 845
  • [27] RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES
    Nie, Jiaxi
    Verstraete, Jacques
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 103 - 113
  • [28] Multipartite Ramsey Numbers for Odd Cycles
    Gyarfas, Andras
    Sarkozyz, Gabor N.
    Schelp, Richard H.
    JOURNAL OF GRAPH THEORY, 2009, 61 (01) : 12 - 21
  • [29] Ramsey numbers of cycles in random graphs
    Araujo, Pedro
    Pavez-Signe, Matias
    Sanhueza-Matamala, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2024,
  • [30] The Ramsey Numbers for A Triple of Long Cycles
    Figaj, Agnieszka
    Luczak, Tomasz
    COMBINATORICA, 2018, 38 (04) : 827 - 845