Degree Ramsey numbers for cycles and blowups of trees

被引:9
|
作者
Jiang, Tao [1 ]
Milans, Kevin G. [2 ]
West, Douglas B. [3 ]
机构
[1] Miami Univ, Dept Math, Oxford, OH 45056 USA
[2] Univ S Carolina, Dept Math & Comp Sci, Columbia, SC 29208 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
COMPLETE BIPARTITE GRAPHS; COMPLETE SUBGRAPHS; COMPONENTS;
D O I
10.1016/j.ejc.2012.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H ->(s) G mean that every s-coloring of E(H) produces a monochromatic copy of G in some color class. Let the s-color degree Ramsey number of a graph G, written R-Delta(G; s), be min{Delta(H): H ->(s) G}. We prove that the 2-color degree Ramsey number is at most 96 for every even cycle and at most 3458 for every odd cycle. For the general s-color problem on even cycles, we prove R-Delta(C-2m; s) <= 16s(6) for all m, and R-Delta (C-4; s) >= 0.007s(14/9). The constant upper bound for R-Delta(C-n; 2) uses blowups of graphs, where the d-blowup of a graph G is the graph G' obtained by replacing each vertex of G with an independent set of size d and each edge e of G with a copy of the complete bipartite graph K-d.d. We also prove the existence of a function f such that if G' is the d-blowup of G, then R-Delta(G'; s) <= f (R-Delta(G; s), s, d). (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [1] Degree Ramsey numbers of closed blowups of trees
    Horn, Paul
    Milans, Kevin G.
    Roedl, Vojtech
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02):
  • [2] Degree Ramsey numbers for even cycles
    Tait, Michael
    DISCRETE MATHEMATICS, 2018, 341 (01) : 104 - 108
  • [3] Ramsey numbers of trees versus odd cycles
    Brennan, Matthew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [4] Ramsey numbers for trees of small maximum degree
    Haxell, PE
    Luczak, T
    Tingley, PW
    COMBINATORICA, 2002, 22 (02) : 287 - 320
  • [5] Ramsey Numbers for Trees of Small Maximum Degree
    P. E. Haxell
    T. Łuczak
    P. W. Tingley
    Combinatorica, 2002, 22 : 287 - 320
  • [6] Multicolor on-line degree Ramsey numbers of trees
    Kinnersley, William B.
    West, Douglas B.
    JOURNAL OF COMBINATORICS, 2012, 3 (01) : 91 - 100
  • [7] Ramsey numbers of bounded degree trees versus general graphs
    Montgomery, Richard
    Pavez-Signe, Matias
    Yan, Jun
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 173 : 102 - 145
  • [8] RAMSEY NUMBERS FOR TREES
    Sun, Zhi-Hong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) : 164 - 176
  • [9] Bipartite Ramsey numbers of cycles
    Yan, Zilong
    Peng, Yuejian
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [10] On the geometric Ramsey numbers of trees
    Gao, Pu
    DISCRETE MATHEMATICS, 2016, 339 (01) : 375 - 381