Degree Ramsey numbers for cycles and blowups of trees

被引:9
|
作者
Jiang, Tao [1 ]
Milans, Kevin G. [2 ]
West, Douglas B. [3 ]
机构
[1] Miami Univ, Dept Math, Oxford, OH 45056 USA
[2] Univ S Carolina, Dept Math & Comp Sci, Columbia, SC 29208 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
COMPLETE BIPARTITE GRAPHS; COMPLETE SUBGRAPHS; COMPONENTS;
D O I
10.1016/j.ejc.2012.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H ->(s) G mean that every s-coloring of E(H) produces a monochromatic copy of G in some color class. Let the s-color degree Ramsey number of a graph G, written R-Delta(G; s), be min{Delta(H): H ->(s) G}. We prove that the 2-color degree Ramsey number is at most 96 for every even cycle and at most 3458 for every odd cycle. For the general s-color problem on even cycles, we prove R-Delta(C-2m; s) <= 16s(6) for all m, and R-Delta (C-4; s) >= 0.007s(14/9). The constant upper bound for R-Delta(C-n; 2) uses blowups of graphs, where the d-blowup of a graph G is the graph G' obtained by replacing each vertex of G with an independent set of size d and each edge e of G with a copy of the complete bipartite graph K-d.d. We also prove the existence of a function f such that if G' is the d-blowup of G, then R-Delta(G'; s) <= f (R-Delta(G; s), s, d). (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [21] Multicolour Ramsey numbers of odd cycles
    Day, A. Nicholas
    Johnson, J. Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 124 : 56 - 63
  • [22] Local Ramsey numbers for copies of cycles
    Bielak, H
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 29 - 42
  • [23] Gallai-Ramsey numbers for cycles
    Fujita, Shinya
    Magnant, Colton
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1247 - 1254
  • [24] RAMSEY NUMBERS FOR PATHS AND CYCLES IN GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A44 - A45
  • [25] The Ramsey numbers of two sets of cycles
    Wang, Longqin
    Chen, Yaojun
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 129 - 136
  • [26] The Ramsey numbers for disjoint unions of cycles
    Denley, T
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 31 - 44
  • [27] The Ramsey Numbers for A Triple of Long Cycles
    Agnieszka Figaj
    Tomasz Łuczak
    Combinatorica, 2018, 38 : 827 - 845
  • [28] RAMSEY NUMBERS FOR NONTRIVIAL BERGE CYCLES
    Nie, Jiaxi
    Verstraete, Jacques
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 103 - 113
  • [29] Multipartite Ramsey Numbers for Odd Cycles
    Gyarfas, Andras
    Sarkozyz, Gabor N.
    Schelp, Richard H.
    JOURNAL OF GRAPH THEORY, 2009, 61 (01) : 12 - 21
  • [30] Ramsey numbers of cycles in random graphs
    Araujo, Pedro
    Pavez-Signe, Matias
    Sanhueza-Matamala, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2024,