Rademacher functions in Cesaro type spaces

被引:17
|
作者
Astashkin, Sergei V. [1 ]
Maligranda, Lech [2 ]
机构
[1] Samara State Univ, Dept Math & Mech, Samara 443011, Russia
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
基金
瑞典研究理事会;
关键词
Rademacher functions; Cesaro function spaces; Korenblyum-Krein-Levin spaces; rearrangement invariant spaces; subspaces; complemented subspaces;
D O I
10.4064/sm198-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Rademacher sums are investigated in the Cesaro spaces Ces(p) (1 <= p <= infinity) and in the weighted Korenblyum-Krein-Levin spaces K(p,w) on [0,1]. They span l(2) space in Ces(p) for any 1 <= p < infinity and in K(p,w) if and only if the weight w is larger than t log(2)(p/2)(2/t) on (0,1). Moreover, the span of the Rademachers is not complemented in Ces(p) for any 1 <= p < infinity or in K(1,w) for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l(2), this span is a complemented subspace in K(p,w).
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条