Extended Cesaro operators between generalized Besov spaces and Bloch type spaces in the unit ball

被引:7
|
作者
Zhou, Ze-Hua [1 ]
Zhu, Min [1 ]
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generalized Besov space; Bloch-type space; extended Cesaro operators; boundedness; compactness; RIEMANN-STIELTJES OPERATORS; BERGMAN SPACES; HARDY; COMPACTNESS; SEMIGROUPS; NORM;
D O I
10.1155/2009/548956
中图分类号
学科分类号
摘要
Let g be a holomorphic of the unit ball B in the n-dimensional complex space, and denote by T-g the extended Cesaro operator with symbol g. Let 0 < p < +infinity, -n - 1 < q < +infinity, q > -1 and alpha > 0, starting with a brief introduction to well known results about Cesaro operator, we investigate the boundedness and compactness of T-g between generalized Besov space B(p, q) and alpha- Bloch space B-alpha in the unit ball, and also present some necessary and sufficient conditions.
引用
收藏
页码:209 / 223
页数:15
相关论文
共 50 条