Rademacher functions in Cesaro type spaces

被引:17
|
作者
Astashkin, Sergei V. [1 ]
Maligranda, Lech [2 ]
机构
[1] Samara State Univ, Dept Math & Mech, Samara 443011, Russia
[2] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
基金
瑞典研究理事会;
关键词
Rademacher functions; Cesaro function spaces; Korenblyum-Krein-Levin spaces; rearrangement invariant spaces; subspaces; complemented subspaces;
D O I
10.4064/sm198-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Rademacher sums are investigated in the Cesaro spaces Ces(p) (1 <= p <= infinity) and in the weighted Korenblyum-Krein-Levin spaces K(p,w) on [0,1]. They span l(2) space in Ces(p) for any 1 <= p < infinity and in K(p,w) if and only if the weight w is larger than t log(2)(p/2)(2/t) on (0,1). Moreover, the span of the Rademachers is not complemented in Ces(p) for any 1 <= p < infinity or in K(1,w) for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l(2), this span is a complemented subspace in K(p,w).
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [31] The Cesaro Operator on Weighted Bergman Frechet and (LB)-Spaces of Analytic Functions
    Kizgut, Ersin
    FILOMAT, 2021, 35 (12) : 4049 - 4060
  • [32] Cesaro-type operators on Hardy, BMOA and Bloch spaces
    Xiao, J
    ARCHIV DER MATHEMATIK, 1997, 68 (05) : 398 - 406
  • [33] Rademacher-type formulas for restricted partition and overpartition functions
    Andrew V. Sills
    The Ramanujan Journal, 2010, 23 : 253 - 264
  • [34] THE CESARO OPERATOR ON DUALS OF POWER SERIES SPACES OF INFINITE TYPE
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    JOURNAL OF OPERATOR THEORY, 2018, 79 (02) : 373 - 402
  • [35] The Cesaro Operator on Duals of Smooth Sequence Spaces of Infinite Type
    Kizgut, Ersin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [36] Rademacher functions in BMO
    Astashkin, Sergey V.
    Leibov, Mikhail
    Maligranda, Lech
    STUDIA MATHEMATICA, 2011, 205 (01) : 83 - 100
  • [37] Rademacher-type formulas for restricted partition and overpartition functions
    Sills, Andrew V.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 253 - 264
  • [38] Rademacher Theorem for Frechet Spaces
    La Russa, Caterina
    QUAESTIONES MATHEMATICAE, 2010, 33 (03) : 263 - 275
  • [39] Fundamental function of the Rademacher spaces
    Novikova A.I.
    Russian Mathematics, 2014, 58 (2) : 31 - 38
  • [40] Essential norm of Cesaro operators on Lp and Cesaro spaces
    Al Alam, Ihab
    Gaillard, Loic
    Habib, Georges
    Lefevre, Pascal
    Maalouf, Fares
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1038 - 1065