BOUNDEDNESS OF OPERATORS ON HARDY SPACES

被引:13
|
作者
Zhao, Kai [1 ,2 ]
Han, Yongsheng [3 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Shandong, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[3] Auburn Univ, Dept Math, Auburn, AL 36849 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
关键词
Boundedness; Operator; Calderon reproducing formula; Atomic decomposition; Hardy space;
D O I
10.11650/twjm/1500405791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [1], the author provided an example which shows that there is a linear functional bounded uniformly on all atoms in H(1)(R(n)), and it can not be extended to a bounded functional on H(1)(R(n)). In this note, we first give a new atomic decomposition, where the decomposition converges in L(2)(R(n)) rather than only in the distribution sense. Then using this decomposition, we prove that for 0 < p <= 1, T is a linear operator which is bounded on L(2)(R(n)), then T can be extended to a bounded operator from H(p)(R(n)) to L(p)(R(n)) if and only if T is bounded uniformly on all (p, 2)-atoms in L(p)(R(n)). A similar result from H(p)(R(n)) to H(p)(R(n)) is also obtained. These results still hold for the product Hardy space and Hardy space on spaces of homogeneous type.
引用
收藏
页码:319 / 327
页数:9
相关论文
共 50 条
  • [1] Boundedness of operators on Hardy spaces
    Ferenc, Weisz
    ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (3-4): : 541 - 557
  • [2] Boundedness of operators on Hardy spaces
    Ferenc Weisz
    Acta Scientiarum Mathematicarum, 2012, 78 (3-4): : 541 - 557
  • [3] Boundedness of Convolution Operators on Hardy Spaces
    Belinsky, Eduard
    Liflyand, Elijah
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (02) : 183 - 191
  • [4] Boundedness of Convolution Operators on Hardy Spaces
    Eduard Belinsky
    Elijah Liflyand
    Computational Methods and Function Theory, 2019, 19 : 183 - 191
  • [5] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [6] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Jiecheng Chen
    Jiawei Dai
    Dashan Fan
    Xiangrong Zhu
    ScienceChina(Mathematics), 2018, 61 (09) : 109 - 126
  • [7] Boundedness of area operators on anisotropic Hardy spaces
    Pang, Changbao
    Wang, Maofa
    Xu, Bang
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1550 - 1569
  • [8] Boundedness of Fourier integral operators on Hardy spaces
    Peloso, Marco M.
    Secco, Silvia
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 443 - 463
  • [9] On the boundedness of generalized integration operators on Hardy spaces
    Chalmoukis, N.
    Nikolaidis, G.
    COLLECTANEA MATHEMATICA, 2024,
  • [10] Boundedness for commutators of fractional Hardy operators on Herz spaces
    Fu Zunwei
    Liu Zongguang
    Lu Shanzhen
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2007, 17 (01) : 20 - 25