Boundedness of Convolution Operators on Hardy Spaces

被引:0
|
作者
Eduard Belinsky
Elijah Liflyand
机构
[1] Bar-Ilan University,Department of Mathematics
[2] RUDN University,S.M. Nikolskii Institute of Mathematics
关键词
Fourier transform; Hardy space; Atomic decomposition; Primary 42B30; Secondary 42B08; 42B15; 42B35; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
Establishing conditions for the boundedness of an operator taking Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p({\mathbb {R}}^n)$$\end{document} into Lp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({\mathbb {R}}^n)$$\end{document}, with 0<p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 1$$\end{document}, is a classical subject. A standard approach to such problems is using the atomic characterization of Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p({\mathbb {R}}^n)$$\end{document}, 0<p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 1$$\end{document}, and working with atoms. Unlike in certain earlier work on the subject we apply this machinery not to specific operators but to a wide general family of multivariate linear means generated by a multiplier. We illustrate the use of these new conditions applying them to some methods known from before.
引用
收藏
页码:183 / 191
页数:8
相关论文
共 50 条
  • [1] Boundedness of Convolution Operators on Hardy Spaces
    Belinsky, Eduard
    Liflyand, Elijah
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (02) : 183 - 191
  • [2] Boundedness of operators on Hardy spaces
    Ferenc, Weisz
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (3-4): : 541 - 557
  • [3] BOUNDEDNESS OF OPERATORS ON HARDY SPACES
    Zhao, Kai
    Han, Yongsheng
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02): : 319 - 327
  • [4] Boundedness of operators on Hardy spaces
    Ferenc Weisz
    [J]. Acta Scientiarum Mathematicarum, 2012, 78 (3-4): : 541 - 557
  • [5] Convolution operators on Hardy spaces
    Lin, CC
    [J]. STUDIA MATHEMATICA, 1996, 120 (01) : 53 - 59
  • [6] Convolution operators on discrete Hardy spaces
    Boza, S
    Carro, MJ
    [J]. MATHEMATISCHE NACHRICHTEN, 2001, 226 : 17 - 33
  • [7] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [8] Cyclic Convolution Operators on the Hardy Spaces
    Hedayatian, K.
    Faghih-Ahmadi, M.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (02) : 291 - 298
  • [9] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Jiecheng Chen
    Jiawei Dai
    Dashan Fan
    Xiangrong Zhu
    [J]. Science China Mathematics, 2018, 61 (09) : 109 - 126
  • [10] Boundedness of area operators on anisotropic Hardy spaces
    Pang, Changbao
    Wang, Maofa
    Xu, Bang
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1550 - 1569