Boundedness of area operators on anisotropic Hardy spaces

被引:0
|
作者
Pang, Changbao [1 ]
Wang, Maofa [2 ]
Xu, Bang [3 ,4 ,5 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[4] Univ Houston, Dept Math, Houston, TX USA
[5] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
中国国家自然科学基金;
关键词
anisotropy; area operator; Hardy space; Lebesgue space; mixed-norm; LP;
D O I
10.1002/mana.202300134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we completely characterize the boundedness theory of anisotropic area operators from anisotropic mixed-norm Hardy spaces H-(a) over right arrow((P) over right arrow)(R-n) into mixednorm Lebesgue spaces L-(P) over right arrow(R-n) in terms of Carleson measures.
引用
收藏
页码:1550 / 1569
页数:20
相关论文
共 50 条
  • [1] Weighted anisotropic product Hardy spaces and boundedness of sublinear operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 392 - 442
  • [2] Weighted Anisotropic Hardy Spaces and Their Applications in Boundedness of Sublinear Operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3065 - 3100
  • [3] Boundedness of operators on Hardy spaces
    Ferenc, Weisz
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (3-4): : 541 - 557
  • [4] BOUNDEDNESS OF OPERATORS ON HARDY SPACES
    Zhao, Kai
    Han, Yongsheng
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02): : 319 - 327
  • [5] Boundedness of operators on Hardy spaces
    Ferenc Weisz
    [J]. Acta Scientiarum Mathematicarum, 2012, 78 (3-4): : 541 - 557
  • [6] DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS
    Wang, Wenhua
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 365 - 384
  • [7] Boundedness of Convolution Operators on Hardy Spaces
    Belinsky, Eduard
    Liflyand, Elijah
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (02) : 183 - 191
  • [8] Boundedness of Convolution Operators on Hardy Spaces
    Eduard Belinsky
    Elijah Liflyand
    [J]. Computational Methods and Function Theory, 2019, 19 : 183 - 191
  • [9] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [10] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Jiecheng Chen
    Jiawei Dai
    Dashan Fan
    Xiangrong Zhu
    [J]. Science China Mathematics, 2018, 61 (09) : 109 - 126