BOUNDEDNESS OF OPERATORS ON HARDY SPACES

被引:13
|
作者
Zhao, Kai [1 ,2 ]
Han, Yongsheng [3 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Shandong, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[3] Auburn Univ, Dept Math, Auburn, AL 36849 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
关键词
Boundedness; Operator; Calderon reproducing formula; Atomic decomposition; Hardy space;
D O I
10.11650/twjm/1500405791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [1], the author provided an example which shows that there is a linear functional bounded uniformly on all atoms in H(1)(R(n)), and it can not be extended to a bounded functional on H(1)(R(n)). In this note, we first give a new atomic decomposition, where the decomposition converges in L(2)(R(n)) rather than only in the distribution sense. Then using this decomposition, we prove that for 0 < p <= 1, T is a linear operator which is bounded on L(2)(R(n)), then T can be extended to a bounded operator from H(p)(R(n)) to L(p)(R(n)) if and only if T is bounded uniformly on all (p, 2)-atoms in L(p)(R(n)). A similar result from H(p)(R(n)) to H(p)(R(n)) is also obtained. These results still hold for the product Hardy space and Hardy space on spaces of homogeneous type.
引用
收藏
页码:319 / 327
页数:9
相关论文
共 50 条
  • [41] Boundedness of Hausdorff operators on some product Hardy type spaces
    CHEN Jie-cheng1 FAN Da-shan2 ZHANG Chun-jie3
    Applied Mathematics:A Journal of Chinese Universities, 2012, (01) : 114 - 126
  • [42] A note on the boundedness of Calderoln-Zygmund operators on Hardy spaces
    Chen, WG
    Han, YS
    Miao, CX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (01) : 57 - 67
  • [43] Boundedness of Fractional Integral Operators on Hardy-Amalgam Spaces
    Cheung, Ka Luen
    Ho, Kwok-Pun
    Yee, Tat-Leung
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [44] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Jun Cao
    Dachun Yang
    Sibei Yang
    Revista Matemática Complutense, 2013, 26 : 99 - 114
  • [45] Weighted Anisotropic Hardy Spaces and Their Applications in Boundedness of Sublinear Operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3065 - 3100
  • [46] Boundedness of Hardy operators on grand variable weighted Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Zhang, Qian-Qian
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (10): : 24515 - 24527
  • [47] Boundedness and compactness of Hardy operators on Lorentz-type spaces
    Li, Hongliang
    Kaminska, Anna
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 852 - 866
  • [48] Boundedness of Caldern-Zygmund operators in product Hardy spaces
    Han Yong-sheng
    Yang Da-chun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (03) : 321 - 335
  • [49] A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces
    Yang, Dachun
    Zhou, Yuan
    CONSTRUCTIVE APPROXIMATION, 2009, 29 (02) : 207 - 218
  • [50] Boundedness for Hardy Type Operators on Herz Spaces with Variable Exponents
    Min Wang
    Lisheng Shu
    Meng Qu
    AnalysisinTheoryandApplications, 2014, 30 (02) : 224 - 235