Topological entanglement entropy from the holographic partition function

被引:1
|
作者
Fendley, Paul [1 ]
Fisher, Matthew P. A.
Nayak, Chetan
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
topological field theory; entanglement entropy; conformal field theory; fractional quantum hall effect;
D O I
10.1007/s10955-006-9275-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer 'ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.
引用
收藏
页码:1111 / 1144
页数:34
相关论文
共 50 条
  • [31] Charged topological entanglement entropy
    Matsuura, Shunji
    Wen, Xueda
    Hung, Ling-Yan
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [32] Topological Entanglement Entropy with a Twist
    Brown, Benjamin J.
    Bartlett, Stephen D.
    Doherty, Andrew C.
    Barrett, Sean D.
    PHYSICAL REVIEW LETTERS, 2013, 111 (22)
  • [33] Holographic entanglement renormalization of topological insulators
    Wen, Xueda
    Cho, Gil Young
    Lopes, Pedro L. S.
    Gu, Yingfei
    Qi, Xiao-Liang
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2016, 94 (07)
  • [34] Holographic entanglement entropy in general holographic superconductor models
    Peng, Yan
    Pan, Qiyuan
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [35] Spurious Topological Entanglement Entropy from Subsystem Symmetries
    Williamson, Dominic J.
    Dua, Arpit
    Cheng, Meng
    PHYSICAL REVIEW LETTERS, 2019, 122 (14)
  • [36] Holographic entanglement entropy in general holographic superconductor models
    Yan Peng
    Qiyuan Pan
    Journal of High Energy Physics, 2014
  • [37] Entanglement entropy in a holographic Kondo model
    Erdmenger, Johanna
    Flory, Mario
    Hoyos, Carlos
    Newrzella, Max-Niklas
    Wu, Jackson M. S.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (01): : 109 - 130
  • [38] Holographic entanglement entropy for black strings
    Xu, Yuanceng
    Wang, Mengjie
    Jing, Jiliang
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (01)
  • [39] General properties of holographic entanglement entropy
    Headrick, Matthew
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [40] HOLOGRAPHIC ENTANGLEMENT ENTROPY AT FINITE TEMPERATURE
    Bah, Ibrahima
    Faraggi, Alberto
    Zayas, Leopoldo A. Pando
    Terrero-Escalante, Cesar A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (14): : 2703 - 2728