Topological entanglement entropy from the holographic partition function

被引:1
|
作者
Fendley, Paul [1 ]
Fisher, Matthew P. A.
Nayak, Chetan
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
topological field theory; entanglement entropy; conformal field theory; fractional quantum hall effect;
D O I
10.1007/s10955-006-9275-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer 'ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.
引用
收藏
页码:1111 / 1144
页数:34
相关论文
共 50 条
  • [41] Holographic entanglement entropy in the nonconformal medium
    Park, Chanyong
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [42] Holographic entanglement entropy in nonlocal theories
    Joanna L. Karczmarek
    Charles Rabideau
    Journal of High Energy Physics, 2013
  • [43] General properties of holographic entanglement entropy
    Matthew Headrick
    Journal of High Energy Physics, 2014
  • [44] On holographic entanglement entropy of charged matter
    Manuela Kulaxizi
    Andrei Parnachev
    Koenraad Schalm
    Journal of High Energy Physics, 2012
  • [45] Towards a derivation of holographic entanglement entropy
    Casini, Horacio
    Huerta, Marina
    Myers, Robert C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05):
  • [46] Quantum corrections to holographic entanglement entropy
    Faulkner, Thomas
    Lewkowycz, Aitor
    Maldacena, Juan
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [47] Holographic entanglement entropy of the Coulomb branch
    Chalabi, Adam
    Kumar, S. Prem
    O'Bannon, Andy
    Pribytok, Anton
    Rodgers, Ronnie
    Sisti, Jacopo
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [48] Holographic Fermi surfaces and entanglement entropy
    Ogawa, Noriaki
    Takayanagi, Tadashi
    Ugajin, Tomonori
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [49] Corner contributions to holographic entanglement entropy
    Pablo Bueno
    Robert C. Myers
    Journal of High Energy Physics, 2015
  • [50] Holographic entanglement entropy for disconnected regions
    Hubeny, Veronika E.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):