Topological entanglement entropy from the holographic partition function

被引:1
|
作者
Fendley, Paul [1 ]
Fisher, Matthew P. A.
Nayak, Chetan
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
topological field theory; entanglement entropy; conformal field theory; fractional quantum hall effect;
D O I
10.1007/s10955-006-9275-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the entropy of chiral 2+1-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and p+ip superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer 'ground state degeneracy' which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.
引用
收藏
页码:1111 / 1144
页数:34
相关论文
共 50 条
  • [21] A holographic entanglement entropy at spi
    Ghosh, Abir
    Krishnan, Chethan
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [22] Holographic entanglement entropy and generalized entanglement temperature
    Saha, Ashis
    Gangopadhyay, Sunandan
    Saha, Jyoti Prasad
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [23] Causality & holographic entanglement entropy
    Matthew Headrick
    Veronika E. Hubeny
    Albion Lawrence
    Mukund Rangamani
    Journal of High Energy Physics, 2014
  • [24] Holographic evolution of entanglement entropy
    Javier Abajo-Arrastia
    João Aparício
    Esperanza López
    Journal of High Energy Physics, 2010
  • [25] Linearity of holographic entanglement entropy
    Ahmed Almheiri
    Xi Dong
    Brian Swingle
    Journal of High Energy Physics, 2017
  • [26] Causality & holographic entanglement entropy
    Headrick, Matthew
    Hubeny, Veronika E.
    Lawrence, Albion
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [27] Holographic entanglement entropy and confinement
    Lewkowycz, Aitor
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [28] Holographic timelike entanglement entropy from Rindler method
    贺鹏璋
    张海青
    Chinese Physics C, 2024, 48 (11) : 262 - 270
  • [29] Holographic timelike entanglement entropy from Rindler method
    He, Peng-Zhang
    Zhang, Hai-Qing
    CHINESE PHYSICS C, 2024, 48 (11)
  • [30] Topological entanglement entropy and holography
    Pakman, Ari
    Parnachev, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):