Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity

被引:28
|
作者
Kartashov, YV [1 ]
Aleshkevich, VA
Vysloukh, VA
Egorov, AA
Zelenina, AS
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Chair Gen Phys, Moscow 119899, Russia
[2] Univ Politecn Cataluna, Inst Photon Sci, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, ES-08034 Barcelona, Spain
[4] Univ Americas Puebla, Dept Fis & Matemat, Cholula, Cholula, Mexico
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we perform stability analysis of stationary (1 + 1)-dimensional cnoidal waves of cn and dn types (anomalous group velocity dispersion) and sn type (normal group velocity dispersion). The mathematical model is based on the nonlinear Schrodinger equation. With this aim we developed a method that takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when waves evolve into a set of well-separated fundamental bright solitons.
引用
收藏
页码:1 / 036613
页数:11
相关论文
共 50 条
  • [41] Inclined periodic homoclinic breather and rogue waves for the (1+1)-dimensional Boussinesq equation
    Dai, Zhengde
    Wang, Chuanjian
    Liu, Jun
    PRAMANA-JOURNAL OF PHYSICS, 2014, 83 (04): : 473 - 480
  • [42] Inclined periodic homoclinic breather and rogue waves for the (1+1)-dimensional Boussinesq equation
    ZHENGDE DAI
    CHUANJIAN WANG
    JUN LIU
    Pramana, 2014, 83 : 473 - 480
  • [43] Higher order solution of nonlinear waves .1. Cnoidal wave in unstable and dissipative media
    Oh, HG
    Watanabe, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (04) : 979 - 983
  • [44] Bright Soliton Solution of (1+1)-Dimensional Quantum System with Power-Law Dependent Nonlinearity
    Zhao, Yukun
    Chen, Yujie
    Dai, Jun
    Wang, Ying
    Wang, Wei
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [45] Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation
    Zou, Li
    Tian, Shou-Fu
    Feng, Lian-Li
    MODERN PHYSICS LETTERS B, 2017, 31 (36):
  • [46] SHOCK-WAVES IN ONE-DIMENSIONAL MODELS WITH CUBIC NONLINEARITY
    BIKBAEV, RF
    THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 97 (02) : 1236 - 1249
  • [47] Stability analysis and soliton solutions of the (1+1)-dimensional nonlinear chiral Schrödinger equation in nuclear physics
    Badshah, Fazal
    Tariq, Kalim U.
    Bekir, Ahmet
    Kazmi, S. M. Raza
    Az-Zo'bi, Emad
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (09)
  • [48] Interaction of elliptically polarised cross-degenerate cnoidal waves in an isotropic gyrotropic medium with spatial dispersion of cubic nonlinearity
    Makarov, V. A.
    Petnikova, V. M.
    Shuvalov, V. V.
    QUANTUM ELECTRONICS, 2015, 45 (09) : 833 - 836
  • [49] (1+1)-dimensional separation of variables
    Pucacco, Giuseppe
    Rosquist, Kjell
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [50] Two-dimensional cnoidal waves in Kerr-type saturable nonlinear media
    Kartashov, YV
    Vysloukh, VA
    Torner, L
    PHYSICAL REVIEW E, 2003, 68 (01): : 156031 - 156034