Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity

被引:28
|
作者
Kartashov, YV [1 ]
Aleshkevich, VA
Vysloukh, VA
Egorov, AA
Zelenina, AS
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Chair Gen Phys, Moscow 119899, Russia
[2] Univ Politecn Cataluna, Inst Photon Sci, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, ES-08034 Barcelona, Spain
[4] Univ Americas Puebla, Dept Fis & Matemat, Cholula, Cholula, Mexico
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we perform stability analysis of stationary (1 + 1)-dimensional cnoidal waves of cn and dn types (anomalous group velocity dispersion) and sn type (normal group velocity dispersion). The mathematical model is based on the nonlinear Schrodinger equation. With this aim we developed a method that takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when waves evolve into a set of well-separated fundamental bright solitons.
引用
收藏
页码:1 / 036613
页数:11
相关论文
共 50 条
  • [31] (1+1)-dimensional turbulence
    Benzi, R
    Biferale, L
    Tripiccione, R
    Trovatore, E
    PHYSICS OF FLUIDS, 1997, 9 (08) : 2355 - 2363
  • [32] Numerical analysis of the stability of optical bullets (2 + 1) in a planar waveguide with cubic–quintic nonlinearity
    W. B. Fraga
    J. W. M. Menezes
    C. S. Sobrinho
    A. C. Ferreira
    G. F. Guimarães
    A. W. Lima
    A. F. G. F. Filho
    H. H. B. Rocha
    K. D. A. Sabóia
    F. T. Lima
    J. M. S. Filho
    A. S. B. Sombra
    Optical and Quantum Electronics, 2009, 41 : 121 - 130
  • [33] Stability of strongly localized excitations in discrete media with cubic nonlinearity
    S. Darmanyan
    A. Kobyakov
    F. Lederer
    Journal of Experimental and Theoretical Physics, 1998, 86 : 682 - 686
  • [34] Stability of strongly localized excitations in discrete media with cubic nonlinearity
    Darmanyan, S
    Kobyakov, A
    Lederer, F
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 86 (04) : 682 - 686
  • [35] Impact of boundary on the surface soliton in (1+1)-dimensional nonlocal nonlinear media
    Zhao Can
    Ma Xue-Kai
    Wang Jing
    Lu Da-Quan
    Hu Wei
    ACTA PHYSICA SINICA, 2013, 62 (09)
  • [36] Geometric analysis of 1+1 dimensional quasilinear wave equations
    Abbrescia, Leonardo Enrique
    Wong, Willie Wai Yeung
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (03)
  • [37] Stability of (1+1)-dimensional coupled nonlinear Schrodinger equation with elliptic potentials
    Nath, Debraj
    Saha, Naresh
    Roy, Barnana
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (12):
  • [38] Spectral Stability of multiple periodic waves for the Schrodinger system with cubic nonlinearity
    Natali, Fabio
    Moraes, Gabriel
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 21 (02) : 171 - 195
  • [39] Electromagnetic backscattering from freak waves in(1+1)-dimensional deep-water
    谢涛
    沈涛
    William Perrie
    陈伟
    旷海兰
    ChinesePhysicsB, 2010, 19 (05) : 254 - 263
  • [40] Electromagnetic backscattering from freak waves in (1+1)-dimensional deep-water
    Xie Tao
    Shen Tao
    Perrie, William
    Chen Wei
    Kuang Hai-Lan
    CHINESE PHYSICS B, 2010, 19 (05) : 0541021 - 05410210