Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity

被引:28
|
作者
Kartashov, YV [1 ]
Aleshkevich, VA
Vysloukh, VA
Egorov, AA
Zelenina, AS
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Chair Gen Phys, Moscow 119899, Russia
[2] Univ Politecn Cataluna, Inst Photon Sci, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, ES-08034 Barcelona, Spain
[4] Univ Americas Puebla, Dept Fis & Matemat, Cholula, Cholula, Mexico
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we perform stability analysis of stationary (1 + 1)-dimensional cnoidal waves of cn and dn types (anomalous group velocity dispersion) and sn type (normal group velocity dispersion). The mathematical model is based on the nonlinear Schrodinger equation. With this aim we developed a method that takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when waves evolve into a set of well-separated fundamental bright solitons.
引用
收藏
页码:1 / 036613
页数:11
相关论文
共 50 条
  • [21] Chirped elliptically polarised cnoidal waves and polarisation 'chaos' in an isotropic medium with spatial dispersion of cubic nonlinearity
    Makarov, V. A.
    Petnikova, V. M.
    Potravkin, N. N.
    Shuvalov, V. V.
    QUANTUM ELECTRONICS, 2012, 42 (12) : 1118 - 1122
  • [22] The (1+1)-dimensional spatial solitons in media with weak nonlinear nonlocality
    Ding Na
    Guo Qi
    CHINESE PHYSICS B, 2009, 18 (10) : 4298 - 4302
  • [23] The (1+1)-dimensional spatial solitons in media with weak nonlinear nonlocality
    丁娜
    郭旗
    Chinese Physics B, 2009, 18 (10) : 4298 - 4302
  • [24] Solution for (1+1)-dimensional surface solitons in thermal nonlinear media
    Ma, Xuekai
    Yang, Zhenjun
    Lu, Daquan
    Guo, Qi
    Hu, Wei
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [25] Relaxation properties of (1+1)-dimensional driven interfaces in disordered media
    Díaz-Sánchez, A
    Pérez-Garrido, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (41): : 9621 - 9630
  • [26] Self-similar cnoidal and solitary wave solutions of the (1+1)-dimensional generalized nonlinear Schrödinger equation
    L. H. Zhao
    C. Q. Dai
    The European Physical Journal D, 2010, 58 : 327 - 332
  • [27] Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves
    Gallay, Thierry
    Pelinovsky, Dmitry
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (10) : 3607 - 3638
  • [28] Periodic waves and their stability in competing cubic-quintic nonlinearity
    Nath, Debraj
    Roy, Barnana
    Roychoudhury, Rajkumar
    OPTICS COMMUNICATIONS, 2017, 393 : 224 - 231
  • [29] STABILITY OF MULTIDIMENSIONAL SOLITARY WAVES FOR CUBIC-QUINTIC NONLINEARITY
    HAYATA, K
    HIGAKI, H
    KOSHIBA, M
    OPTICAL REVIEW, 1995, 2 (04) : 233 - 235
  • [30] Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas-Milovic equation with parabolic law and nonlocal nonlinearity
    Li, Zhao
    Hussain, Ejaz
    RESULTS IN PHYSICS, 2024, 56