Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity

被引:28
|
作者
Kartashov, YV [1 ]
Aleshkevich, VA
Vysloukh, VA
Egorov, AA
Zelenina, AS
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Chair Gen Phys, Moscow 119899, Russia
[2] Univ Politecn Cataluna, Inst Photon Sci, ES-08034 Barcelona, Spain
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, ES-08034 Barcelona, Spain
[4] Univ Americas Puebla, Dept Fis & Matemat, Cholula, Cholula, Mexico
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we perform stability analysis of stationary (1 + 1)-dimensional cnoidal waves of cn and dn types (anomalous group velocity dispersion) and sn type (normal group velocity dispersion). The mathematical model is based on the nonlinear Schrodinger equation. With this aim we developed a method that takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when waves evolve into a set of well-separated fundamental bright solitons.
引用
收藏
页码:1 / 036613
页数:11
相关论文
共 50 条
  • [1] Transverse modulational instability of (2+1)-dimensional cnoidal waves in media with cubic nonlinearity
    Kartashov, YV
    Aleshkevich, VA
    Vysloukh, VA
    Egorov, AA
    Zelenina, AS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (06) : 1273 - 1284
  • [2] Stability analysis of spatiotemporal cnoidal waves in cubic nonlinear media
    Aleshkevich, VA
    Egorov, AA
    Kartashov, YV
    Vysloukh, VA
    Zelenina, AS
    PHYSICAL REVIEW E, 2003, 67 (06):
  • [3] Effective cubic nonlinearity and cnoidal waves in the degenerate parametric frequency conversion
    Petnikova, V. M.
    Shuvalov, V. V.
    QUANTUM ELECTRONICS, 2010, 40 (03) : 219 - 222
  • [4] Elliptically polarised cnoidal waves in a medium with spatial dispersion of cubic nonlinearity
    Makarov, V. A.
    Perezhogin, I. A.
    Petnikova, V. M.
    Potravkin, N. N.
    Shuvalov, V. V.
    QUANTUM ELECTRONICS, 2012, 42 (02) : 117 - 119
  • [5] Two-dimensional solitary waves in media with quadratic and cubic nonlinearity
    Bang, Ole
    Kivshar, Yuri S.
    Buryak, Alexander V.
    De Rossi, Alfredo
    Trillo, Stefano
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (04):
  • [6] Global stability of traveling waves for (1+1)-dimensional systems of quasilinear wave equations
    Cha, Louis Dongbing
    Shao, Arick
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (04) : 549 - 586
  • [7] Two-dimensional solitary-waves in media with quadratic and cubic nonlinearity
    Bang, O
    Kivshar, YS
    Buryak, AV
    De Rossi, A
    Trillo, S
    PHYSICAL REVIEW E, 1998, 58 (04) : 5057 - 5069
  • [8] STABILITY OF CNOIDAL WAVES IN MEDIA WITH POSITIVE AND NEGATIVE DISPERSION
    SPEKTOR, MD
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1988, 94 (01): : 186 - 202
  • [9] Stability Analysis, Numerical and Exact Solutions of the (1+1)-Dimensional NDMBBM Equation
    Yokus, Asif
    Sulaiman, Tukur Abdulkadir
    Gulluoglu, Mehmet Tahir
    Bulut, Hasan
    THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2018), 2018, 22
  • [10] Analytical Solution and Soliton-Like Behavior for the (1+1)-Dimensional Quantum System with Generalized Cubic-Quintic Nonlinearity
    Wang, Ying
    Li, Shaohong
    Guo, Jiyuan
    Zhou, Qingchun
    Zhou, Yu
    Wen, Wen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (12):