Ground state solutions for a class of Schrodinger-Poisson systems with Hartree-type nonlinearity

被引:3
|
作者
Xie, Weihong [1 ]
Chen, Haibo [1 ]
Wu, Tsung-Fang [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung, Taiwan
基金
中国国家自然科学基金;
关键词
Daomin Cao; Ground state; Schrodinger-Poisson equations; Pohozaev type identity; Nehari manifold; Hartree-type; CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1080/00036811.2019.1698725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Poisson system with Hartree-type nonlinearity - u + u +.fu = (Ia * |u|p)|u|p-2u, inR3, -f = u2, in R3, where. > 0, 0 < a < 3, Ia is a Riesz potential and 3+ a 3 < p < 3 + a. By using the Pohozaev type identity and the filtration of Nehari manifold, we show the existence of positive ground state solutions for the above system.
引用
收藏
页码:2777 / 2803
页数:27
相关论文
共 50 条