Ground state solutions for a class of Schrodinger-Poisson systems with Hartree-type nonlinearity

被引:3
|
作者
Xie, Weihong [1 ]
Chen, Haibo [1 ]
Wu, Tsung-Fang [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung, Taiwan
基金
中国国家自然科学基金;
关键词
Daomin Cao; Ground state; Schrodinger-Poisson equations; Pohozaev type identity; Nehari manifold; Hartree-type; CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1080/00036811.2019.1698725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Poisson system with Hartree-type nonlinearity - u + u +.fu = (Ia * |u|p)|u|p-2u, inR3, -f = u2, in R3, where. > 0, 0 < a < 3, Ia is a Riesz potential and 3+ a 3 < p < 3 + a. By using the Pohozaev type identity and the filtration of Nehari manifold, we show the existence of positive ground state solutions for the above system.
引用
收藏
页码:2777 / 2803
页数:27
相关论文
共 50 条
  • [31] Sign-changing solutions to critical Schrodinger equation with Hartree-type nonlinearity
    Zhang, Cui
    Li, Fuyi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [32] Ground state solutions for a Schrodinger-Poisson system with unconventional potential
    Du, Yao
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (04) : 934 - 944
  • [33] On ground state solutions for the Schrodinger-Poisson equations with critical growth
    Liu, Zhisu
    Guo, Shangjiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 435 - 448
  • [34] Ground state sign-changing solutions for a class of Schrodinger-Poisson type problems in R3
    Chen, Sitong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [35] BOUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-POISSON SYSTEMS
    Du, Xinsheng
    Li, Qi
    Zhao, Zengqin
    Li, Gen
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (01): : 57 - 66
  • [36] Multiple solutions for Schrodinger-Poisson systems with indefinite potential and combined nonlinearity
    Zhang, Qingye
    Xu, Bin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1668 - 1687
  • [37] Schrodinger-Poisson systems with a general critical nonlinearity
    Zhang, Jianjun
    do, Joao Marcos O.
    Squassina, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (04)
  • [38] POSITIVE SOLUTIONS OF SCHRODINGER-POISSON SYSTEMS WITH HARDY POTENTIAL AND INDEFINITE NONLINEARITY
    Lan, Yongyi
    Tang, Biyun
    Hu, Xian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, : 1 - 10
  • [39] Existence and concentration of nontrivial nonnegative ground state solutions to Kirchhoff-type system with Hartree-type nonlinearity
    Li, Fuyi
    Gao, Chunjuan
    Liang, Zhanping
    Shi, Junping
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):
  • [40] Ground state solutions for the nonlinear Schrodinger-Poisson systems with sum of periodic and vanishing potentials
    Xie, Weihong
    Chen, Haibo
    Shi, Hongxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 144 - 158