GROUND STATE SOLUTIONS FOR THE PERIODIC FRACTIONAL SCHRODINGER-POISSON SYSTEMS WITH CRITICAL SOBOLEV EXPONENT

被引:0
|
作者
Yu, Mingzhu [1 ]
Chen, Haibo [1 ]
Xie, Weihong [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Schrodinger-Poisson systems; mountain pass theorem; periodic; critical Sobolev exponent; ground state solutions; POSITIVE SOLUTIONS; EQUATIONS; MULTIPLICITY; EXISTENCE; GUIDE;
D O I
10.1216/rmj.2020.50.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fractional Schrodinger-Poisson system with critical Sobolev exponent {(-Delta)(s)u + V(x)u + phi u = f (x, u) + K (x)vertical bar u vertical bar(2s)*(-2)u in R-3, (-Delta)(t)phi = u(2) in R-3, where (-Delta)(alpha) denotes the fractional Laplacian of order alpha = s, t is an element of (0, 1); V(x), f (x, u) and K(x) are 1-periodic in the x-variables; 2(s)* = 6/(3 - 2s) is the fractional critical Sobolev exponent in dimension 3. Under some weaker conditions on f, we prove the existence of ground state solutions for such a system via the mountain pass theorem in combination with the concentration-compactness principle. Our results are new even for s = t = 1.
引用
收藏
页码:719 / 732
页数:14
相关论文
共 50 条