Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Automated Anomaly Detection in Histology Images using Deep Learning
    Shelton, Lillie
    Soans, Rajath
    Shah, Tosha
    Forest, Thomas
    Janardhan, Kyathanahalli
    Napolitano, Michael
    Gonzalez, Raymond
    Carlson, Grady
    Shah, Jyoti K.
    Chen, Antong
    [J]. DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [2] Road Anomaly Detection Through Deep Learning Approaches
    Luo, Dawei
    Lu, Jianbo
    Guo, Gang
    [J]. IEEE ACCESS, 2020, 8 : 117390 - 117404
  • [3] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [4] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [5] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [6] Anomaly Detection on Web-User Behaviors Through Deep Learning
    Gui, Jiaping
    Chen, Zhengzhang
    Yu, Xiao
    Lumezanu, Cristian
    Chen, Haifeng
    [J]. SECURITY AND PRIVACY IN COMMUNICATION NETWORKS (SECURECOMM 2020), PT I, 2020, 335 : 467 - 473
  • [7] Anomaly Detection of actual IoT traffic flows through Deep Learning
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Pecori, Riccardo
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1736 - 1741
  • [8] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [10] Deep learning for collective anomaly detection
    Ahmed, Mohiuddin
    Pathan, Al-Sakib Khan
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (01) : 137 - 145