Automated Anomaly Detection in Histology Images using Deep Learning

被引:0
|
作者
Shelton, Lillie [1 ]
Soans, Rajath [1 ]
Shah, Tosha [1 ]
Forest, Thomas [1 ]
Janardhan, Kyathanahalli [1 ]
Napolitano, Michael [1 ]
Gonzalez, Raymond [1 ]
Carlson, Grady [1 ]
Shah, Jyoti K. [1 ]
Chen, Antong [1 ]
机构
[1] Merck Co & Inc, Rahway, NJ 08889 USA
关键词
Anomaly Detector; GAN; SSIM; Histology; Digital Pathology;
D O I
10.1117/12.3006224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we have developed a method to detect anomalies in histology slides containing tissues sourced from multiple organs of rats. In the nonclinical phase of drug development, candidate drugs are typically tested on animals such as rats, and a postmortem assessment is conducted based on human evaluation of histology slides. Findings in those histology slides manifest as anomalous departures from expectation on Whole Slide Images (WSIs). Our proposed method, makes use of a StyleGAN2 and ResNet based encoder to identify anomalies in WSIs. Using these models, we train an image reconstruction pipeline only on an anomaly-free ('normal') dataset. We then use this pipeline to identify anomalies using the reconstruction quality measured by Structural Similarity Index (SSIM). Our experiments were carried out on 54 WSIs across 40 different organ types and achieved a patch-level classification accuracy of 88%.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Automated Socket Anomaly Detection through Deep Learning
    Agrawal, Nidhi
    Yang, Min-Jian
    Xanthopoulos, Constantinos
    Thangamariappan, Vijayakumar
    Xiao, Joe
    Ho, Chee-Wah
    Schaub, Keith
    Leventhal, Ira
    [J]. 2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
  • [2] Automated Detection of Epiretinal Membranes in OCT Images Using Deep Learning
    Tang, Yong
    Gao, Xiaorong
    Wang, Weijia
    Dan, Yujiao
    Zhou, Linjing
    Su, Song
    Wu, Jiali
    Lv, Hongbin
    He, Yue
    [J]. OPHTHALMIC RESEARCH, 2023, 66 (01) : 238 - 246
  • [3] Automated detection of glaucoma using retinal images with interpretable deep learning
    Mehta, Parmita
    Lee, Aaron Y.
    Wen, Joanne
    Bannit, Michael R.
    Chen, Philip P.
    Bojikian, Karine D.
    Petersen, Christine
    Egan, Catherine A.
    Lee, Su-In
    Balazinska, Magdalena
    Rokem, Ariel
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [4] Automated Detection of Cystitis in Ultrasound Images Using Deep Learning Techniques
    Sankari, V. M. Raja
    Raykar, Dattanand Arun
    Snekhalatha, U.
    Karthik, Varshini
    Shetty, Veerendra
    [J]. IEEE ACCESS, 2023, 11 : 104179 - 104190
  • [5] Automated Defect Detection From Ultrasonic Images Using Deep Learning
    Medak, Duje
    Posilovic, Luka
    Subasic, Marko
    Budimir, Marko
    Loncaric, Sven
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (10) : 3126 - 3134
  • [6] Classification of cancer histology images using deep learning
    Xie, Weidong
    [J]. CANCER RESEARCH, 2019, 79 (13)
  • [7] Automated Detection of Hummingbirds in Images: A Deep Learning Approach
    Serrano, Sergio A.
    Benitez-Jimenez, Ricardo
    Nunez-Rosas, Laura
    del Coro Arizmendi, Ma
    Greeney, Harold
    Reyes-Meza, Veronica
    Morales, Eduardo
    Jair Escalante, Hugo
    [J]. PATTERN RECOGNITION, 2018, 10880 : 155 - 166
  • [8] Automated detection of regions of interest in cartridge case images using deep learning
    Le Bouthillier, Marie-Eve
    Hrynkiw, Lynne
    Beauchamp, Alain
    Duong, Luc
    Ratte, Sylvie
    [J]. JOURNAL OF FORENSIC SCIENCES, 2023, 68 (06) : 1958 - 1971
  • [9] Automated Road Damage Detection Using UAV Images and Deep Learning Techniques
    Silva, Luis Augusto
    Leithardt, Valderi Reis Quietinho
    Batista, Vivian Felix Lopez
    Gonzalez, Gabriel Villarrubia
    Santana, Juan Francisco De Paz
    [J]. IEEE ACCESS, 2023, 11 : 62918 - 62931
  • [10] CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images
    Junayed, Masum Shah
    Islam, Md Baharul
    Sadeghzadeh, Arezoo
    Rahman, Saimunur
    [J]. IEEE ACCESS, 2021, 9 (09): : 128799 - 128808