Automated Anomaly Detection in Histology Images using Deep Learning

被引:0
|
作者
Shelton, Lillie [1 ]
Soans, Rajath [1 ]
Shah, Tosha [1 ]
Forest, Thomas [1 ]
Janardhan, Kyathanahalli [1 ]
Napolitano, Michael [1 ]
Gonzalez, Raymond [1 ]
Carlson, Grady [1 ]
Shah, Jyoti K. [1 ]
Chen, Antong [1 ]
机构
[1] Merck Co & Inc, Rahway, NJ 08889 USA
关键词
Anomaly Detector; GAN; SSIM; Histology; Digital Pathology;
D O I
10.1117/12.3006224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we have developed a method to detect anomalies in histology slides containing tissues sourced from multiple organs of rats. In the nonclinical phase of drug development, candidate drugs are typically tested on animals such as rats, and a postmortem assessment is conducted based on human evaluation of histology slides. Findings in those histology slides manifest as anomalous departures from expectation on Whole Slide Images (WSIs). Our proposed method, makes use of a StyleGAN2 and ResNet based encoder to identify anomalies in WSIs. Using these models, we train an image reconstruction pipeline only on an anomaly-free ('normal') dataset. We then use this pipeline to identify anomalies using the reconstruction quality measured by Structural Similarity Index (SSIM). Our experiments were carried out on 54 WSIs across 40 different organ types and achieved a patch-level classification accuracy of 88%.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [32] Anomaly Detection at the IoT Edge using Deep Learning
    Utomo, Darmawan
    Hsiung, Pao-Ann
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [33] Network anomaly detection using deep learning techniques
    Hooshmand, Mohammad Kazim
    Hosahalli, Doreswamy
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (02) : 228 - 243
  • [34] Automated Detection of Atypical Cells in Urine Cytology Using Deep Anomaly Detection
    Paik, Inyoung
    Ryu, Han Suk
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    [J]. MODERN PATHOLOGY, 2021, 34 (SUPPL 2) : 259 - 260
  • [35] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [36] Automated Detection of Atypical Cells in Urine Cytology Using Deep Anomaly Detection
    Paik, Inyoung
    Ryu, Han Suk
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    [J]. LABORATORY INVESTIGATION, 2021, 101 (SUPPL 1) : 259 - 260
  • [37] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [38] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [39] Deep learning classification of lung cancer histology using CT images
    Tafadzwa L. Chaunzwa
    Ahmed Hosny
    Yiwen Xu
    Andrea Shafer
    Nancy Diao
    Michael Lanuti
    David C. Christiani
    Raymond H. Mak
    Hugo J. W. L. Aerts
    [J]. Scientific Reports, 11
  • [40] Classification of lung cancer histology images using deep learning.
    Yang, Yan
    Zhen, Tiantian
    Shi, Huijuan
    Xie, Weidong
    Han, Anjia
    Wang, Xunzhang
    [J]. CANCER RESEARCH, 2021, 81 (13)