Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Robust Deep Learning Methods for Anomaly Detection
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Chawla, Sanjay
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3507 - 3508
  • [22] Hybrid deep learning and HOF for Anomaly Detection
    Hamdi, Slim
    Bouindour, Samir
    Loukil, Kais
    Snoussi, Hichem
    Abid, Mohamed
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 575 - 580
  • [23] Visual Anomaly Detection by Distributed Deep Learning
    Hu, Ruiguang
    Sun, Peng
    Ge, Yifan
    [J]. AOPC 2020: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2020, 11567
  • [24] ANOMALIB: A DEEP LEARNING LIBRARY FOR ANOMALY DETECTION
    Akcay, Samet
    Ameln, Dick
    Vaidya, Ashwin
    Lakshmanan, Barath
    Ahuja, Nilesh
    Genc, Utku
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1706 - 1710
  • [25] Classical and Deep Learning Classifiers for Anomaly Detection
    Raza, Manahil
    Qayyum, Usman
    [J]. PROCEEDINGS OF 2019 16TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2019, : 614 - 618
  • [26] Anomaly Detection in Phonocardiogram Employing Deep Learning
    Sujadevi, V. G.
    Soman, K. P.
    Vinayakumar, R.
    Sankar, A. U. Prem
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 525 - 534
  • [27] Deep Learning for Medical Anomaly Detection - A Survey
    Fernando, Tharindu
    Gammulle, Harshala
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [28] Deep Visual Anomaly Detection with Negative Learning
    Lee, Jin-Ha
    Astrid, Marcella
    Zaheer, Muhammad Zaigham
    Lee, Seung-Ik
    [J]. FRONTIERS OF COMPUTER VISION, IW-FCV 2021, 2021, 1405 : 218 - 232
  • [29] An Unsupervised Deep Learning Framework for Anomaly Detection
    Kuo, Che-Wei
    Ying, Josh Jia-Ching
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT I, 2023, 13995 : 284 - 295
  • [30] Threshold-free Anomaly Detection for Streaming Time Series through Deep Learning
    Zhang, Jing
    Wang, Chao
    Li, Zezhou
    Zhang, Xianbo
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1783 - 1789