Automated Socket Anomaly Detection through Deep Learning

被引:1
|
作者
Agrawal, Nidhi [1 ]
Yang, Min-Jian [1 ]
Xanthopoulos, Constantinos [2 ]
Thangamariappan, Vijayakumar [1 ]
Xiao, Joe [3 ]
Ho, Chee-Wah [4 ]
Schaub, Keith [2 ]
Leventhal, Ira [1 ]
机构
[1] Advantest Amer Inc, San Jose, CA 95134 USA
[2] Advantest Amer Inc, Austin, TX USA
[3] Essai Inc, Advantest Grp, Fremont, CA USA
[4] Essai Inc, Advantest Grp, Phoenix, AZ USA
关键词
D O I
10.1109/ITC44778.2020.9325269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Automated real-time anomaly detection of temperature sensors through machine-learning
    Nayak, Debanjana
    Perros, Harry
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2020, 34 (03) : 137 - 152
  • [32] Automated anomaly detection and multi-label anomaly classification in crowd scenes based on optimal thresholding and deep learning strategy
    Modi, Harshadkumar S.
    Parikh, Dhaval A.
    [J]. INTERNATIONAL JOURNAL OF AUTONOMOUS AND ADAPTIVE COMMUNICATIONS SYSTEMS, 2024, 17 (02) : 127 - 158
  • [33] Automated Detection of Atypical Cells in Urine Cytology Using Deep Anomaly Detection
    Paik, Inyoung
    Ryu, Han Suk
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    [J]. MODERN PATHOLOGY, 2021, 34 (SUPPL 2) : 259 - 260
  • [34] Automated Detection of Atypical Cells in Urine Cytology Using Deep Anomaly Detection
    Paik, Inyoung
    Ryu, Han Suk
    Kwak, Tae-Yeong
    Kim, Sun Woo
    Chang, Hyeyoon
    [J]. LABORATORY INVESTIGATION, 2021, 101 (SUPPL 1) : 259 - 260
  • [35] Anomaly Detection through Unsupervised Federated Learning
    Nardi, Mirko
    Valerio, Lorenzo
    Passarella, Andrea
    [J]. 2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 495 - 501
  • [36] Anomaly Detection of Breast Cancer Using Deep Learning
    Alloqmani, Ahad
    Abushark, Yoosef B.
    Khan, Asif Irshad
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10977 - 11002
  • [37] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    [J]. ERCIM NEWS, 2020, (122): : 47 - 48
  • [38] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    [J]. MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [39] Network Traffic Anomaly Detection via Deep Learning
    Fotiadou, Konstantina
    Velivassaki, Terpsichori-Helen
    Voulkidis, Artemis
    Skias, Dimitrios
    Tsekeridou, Sofia
    Zahariadis, Theodore
    [J]. INFORMATION, 2021, 12 (05)
  • [40] Scaling Deep Learning Models for Spectrum Anomaly Detection
    Li, Zhijing
    Xiao, Zhujun
    Wang, Bolun
    Zhao, Ben Y.
    Zheng, Haitao
    [J]. PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19), 2019, : 291 - 300