Enhancing Object Detection Using Synthetic Examples

被引:0
|
作者
Hughes, David [1 ]
Ji, Hao [1 ]
机构
[1] Calif State Polytech Univ Pomona, Comp Sci, Pomona, CA 91768 USA
关键词
object detection; adversarial examples; synthetic data; 3D object models; neural renderers;
D O I
10.1109/CCWC51732.2021.9376062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Manual data annotation for training custom object detection can be a time-consuming and error-prone process. In this paper, we propose an automatic approach to generating synthetic, annotated images using differentiable neural rendering and 3D object models. We also investigate the possibility of using 3D adversarial object models to improve object detection accuracy. The experimental results show that the object detection models trained using both synthetic examples rendered from 3D object models and real data outperform the baseline model trained on only real data.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 50 条
  • [41] Object detection using deep ensemble model for enhancing security towards sustainable agriculture
    Singh P.
    Krishnamurthi R.
    International Journal of Information Technology, 2023, 15 (6) : 3113 - 3126
  • [42] Enhancing concealed object detection in Active Millimeter Wave Images using wavelet transform
    Su, Yun
    Tan, Weixian
    Dong, Yifan
    Xu, Wei
    Huang, Pingping
    Zhang, Jianxin
    Zhang, Diankun
    SIGNAL PROCESSING, 2024, 216
  • [43] Enhancing the identification accuracy of deep learning object detection using natural language processing
    Tsai, Ming-Fong
    Tseng, Hung-Ju
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 6676 - 6691
  • [44] Visual Object Tracking Using Positive and Negative Examples
    Wada, Toshikazu
    ROBOTICS RESEARCH, 2010, 66 : 189 - 199
  • [45] Notes on the "Dramatics" or Dynamics of the Object (Using examples with pie)
    Sandberg, B
    PAJ-A JOURNAL OF PERFORMANCE AND ART, 1999, (63): : 105 - 111
  • [46] Enhancing JPEG Steganography using Iterative Adversarial Examples
    Mo, Huaxiao
    Song, Tingting
    Chen, Bolin
    Luo, Weiqi
    Huang, Jiwu
    2019 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2019,
  • [47] Method for Enhancing AI Accuracy in Pressure Injury Detection Using Real and Synthetic Datasets
    Kim, Jaeseung
    Kim, Mujung
    Youn, Heejun
    Lee, Seunghyun
    Kwon, Soonchul
    Park, Kyung Hee
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [48] Enhancing Trustworthiness in Real Time Single Object Detection
    Tarkasis, Konstantinos
    Kaparis, Konstantinos
    Georgiou, Andreas C.
    INFORMATION SYSTEMS FRONTIERS, 2025,
  • [49] SPCDet: Enhancing Object Detection with Combined Feature Fusing
    Wang, Haixin
    Wu, Lintao
    Wu, Qiongzhi
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 252 - 267
  • [50] The object detection efficiency in synthetic aperture radar systems
    Chernoyarov O.V.
    Dobrucky B.
    Ivanov V.A.
    Faulgaber A.N.
    International Journal of Engineering, Transactions B: Applications, 2020, 33 (02): : 337 - 343