Enhancing Object Detection Using Synthetic Examples

被引:0
|
作者
Hughes, David [1 ]
Ji, Hao [1 ]
机构
[1] Calif State Polytech Univ Pomona, Comp Sci, Pomona, CA 91768 USA
关键词
object detection; adversarial examples; synthetic data; 3D object models; neural renderers;
D O I
10.1109/CCWC51732.2021.9376062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Manual data annotation for training custom object detection can be a time-consuming and error-prone process. In this paper, we propose an automatic approach to generating synthetic, annotated images using differentiable neural rendering and 3D object models. We also investigate the possibility of using 3D adversarial object models to improve object detection accuracy. The experimental results show that the object detection models trained using both synthetic examples rendered from 3D object models and real data outperform the baseline model trained on only real data.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 50 条
  • [31] Synthetic Data Supervised Salient Object Detection
    Wu, Zhenyu
    Wang, Lin
    Wang, Wei
    Shi, Tengfei
    Chen, Chenglizhao
    Hao, Aimin
    Li, Shuo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5557 - 5565
  • [32] Bolstering Maritime Object Detection with Synthetic Data
    Becktor, Jonathan
    Scholler, Frederik E. T.
    Boukas, Evangelos
    Blanke, Mogens
    Nalpantidis, Lazaros
    IFAC PAPERSONLINE, 2022, 55 (31): : 64 - 69
  • [33] Physically realizable adversarial examples for convolutional object detection algorithms
    Chambers, David R.
    Garza, H. Abe
    AUTOMATIC TARGET RECOGNITION XXIX, 2019, 10988
  • [34] Reweighting neural network examples for robust object detection at sea
    Becktor, J.
    Boukas, E.
    Blanke, M.
    Nalpantidis, L.
    ELECTRONICS LETTERS, 2021, 57 (16) : 608 - 610
  • [35] Efficient object detection robust to RST with minimal set of examples
    Onis, Sebastien
    Sanson, Henri
    Garcia, Christophe
    Dugelay, Jean-Luc
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 179 - +
  • [36] A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection
    Duan, Jiale
    Qiu, Linyao
    He, Guangjun
    Zhao, Ling
    Zhang, Zhenshi
    Li, Haifeng
    REMOTE SENSING, 2024, 16 (06)
  • [37] Enhancing human face detection by resampling examples through manifolds
    Chen, Jie
    Wang, Ruiping
    Yan, Shengye
    Shan, Shiguang
    Chen, Xilin
    Gao, Wen
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2007, 37 (06): : 1017 - 1028
  • [38] Enhancing Aircraft Object Detection in Complex Airport Scenes Using Deep Transfer Learning
    Zhong Dan
    Li Tiehu
    Li Cheng
    ACTA PHOTONICA SINICA, 2024, 53 (04)
  • [39] Enhancing the identification accuracy of deep learning object detection using natural language processing
    Ming-Fong Tsai
    Hung-Ju Tseng
    The Journal of Supercomputing, 2021, 77 : 6676 - 6691
  • [40] Enhancing object detection in the dark using U-Net based restoration module
    Huang, Yen-Ting
    Peng, Yan-Tsung
    Liao, Wen-Hung
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,