Enhancing Object Detection Using Synthetic Examples

被引:0
|
作者
Hughes, David [1 ]
Ji, Hao [1 ]
机构
[1] Calif State Polytech Univ Pomona, Comp Sci, Pomona, CA 91768 USA
关键词
object detection; adversarial examples; synthetic data; 3D object models; neural renderers;
D O I
10.1109/CCWC51732.2021.9376062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Manual data annotation for training custom object detection can be a time-consuming and error-prone process. In this paper, we propose an automatic approach to generating synthetic, annotated images using differentiable neural rendering and 3D object models. We also investigate the possibility of using 3D adversarial object models to improve object detection accuracy. The experimental results show that the object detection models trained using both synthetic examples rendered from 3D object models and real data outperform the baseline model trained on only real data.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 50 条
  • [21] Shedding Light on Darkness: Enhancing Object Detection Robustness with Synthetic Perturbations for Real-world Challenges
    Premakumara, Nilantha
    Jalaian, Brian
    Suri, Niranjan
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 36 - 37
  • [22] Fully Synthetic Pedestrian Anomaly Behavior Dataset Generation in Metaverse for Enhancing Autonomous Driving Object Detection
    Aung, Nang Htet Htet
    Sangwongngam, Paramin
    Jintamethasawat, Rungroj
    Wuttisittikulkij, Lunchakorn
    IEEE ACCESS, 2024, 12 : 166630 - 166642
  • [23] Enhancing Object Detection in Self-Driving Cars Using a Hybrid Approach
    Khan, Sajjad Ahmad
    Lee, Hyun Jun
    Lim, Huhnkuk
    ELECTRONICS, 2023, 12 (13)
  • [24] An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object Detection
    Hinterstoisser, Stefan
    Pauly, Olivier
    Heibel, Hauke
    Marek, Martina
    Bokeloh, Martin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2787 - 2796
  • [25] Validation of object detection in UAV-based images using synthetic data
    Lee, Eung-Joo
    Conover, Damon
    Bhattacharyya, Shuvra S.
    Kwon, Heesung
    Hill, Jason
    Evensen, Kenneth
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [26] SSDLiteX: Enhancing SSDLite for Small Object Detection
    Kang, Hyeong-Ju
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [27] Edge Enhancing Network for Salient Object Detection
    Zhao W.
    Wang H.
    Liu X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (02): : 293 - 302
  • [28] Object Recognition from very few Training Examples for Enhancing Bicycle Maps
    Reinders, Christoph
    Ackermann, Hanno
    Yang, Michael Ying
    Rosenhahn, Bodo
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 860 - 867
  • [29] Buried object detection with synthetic aperture sonar
    Nakamura, Y
    Yamaguchi, I
    Tanaka, T
    Hama, Y
    PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON UNDERWATER TECHNOLOGY, 2004, : 27 - 31
  • [30] Synthetic Dataset Generation Method for Object Detection
    Ningning Zhou
    Tong Li
    International Journal of Computational Intelligence Systems, 18 (1)