Enhancing Object Detection Using Synthetic Examples

被引:0
|
作者
Hughes, David [1 ]
Ji, Hao [1 ]
机构
[1] Calif State Polytech Univ Pomona, Comp Sci, Pomona, CA 91768 USA
关键词
object detection; adversarial examples; synthetic data; 3D object models; neural renderers;
D O I
10.1109/CCWC51732.2021.9376062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Manual data annotation for training custom object detection can be a time-consuming and error-prone process. In this paper, we propose an automatic approach to generating synthetic, annotated images using differentiable neural rendering and 3D object models. We also investigate the possibility of using 3D adversarial object models to improve object detection accuracy. The experimental results show that the object detection models trained using both synthetic examples rendered from 3D object models and real data outperform the baseline model trained on only real data.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 50 条
  • [1] Enhancing Object Detection Algorithms by Synthetic Aerial Images
    Yilmaz, Can
    Maras, Bahri
    Yilmaz, Gorkem
    Ceylan, Goksu
    Hamamcioglu, Onder
    Arica, Nafiz
    Ertuzun, Aysin Baytan
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] InstaGen: Enhancing Object Detection by Training on Synthetic Dataset
    Feng, Chengjian
    Zhong, Yujie
    Jie, Zequn
    Xie, Weidi
    Mal, Lin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 14121 - 14130
  • [3] ODUSI: Object Detection using Synthetic Imagery
    Esposito, Marilyn A.
    Lin, Jing
    Young, Renea
    Nelson, Keefa
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [4] OBJECT DETECTION WITH A MINIMAL SET OF EXAMPLES USING CONVOLUTIONAL PCA
    Onis, S.
    Garcia, C.
    Sanson, H.
    Dugelay, J-L.
    2009 IEEE INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2009), 2009, : 86 - +
  • [5] Enhancing Sales by using information with the help of Object Detection and Object Storage
    Mayank, Sharma
    Sanket, Varkhede
    Govindwad, Akilesh
    Thiyagarajan, Bharadwaj Vishanth
    2016 INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION TECHNIQUES (ICACDOT), 2016, : 731 - 736
  • [6] Enhancing Object Detection in Maritime Environments Using Metadata
    Fernandes, Diogo Samuel
    Bispo, Joao
    Bento, Luis Conde
    Figueiredo, Monica
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT II, 2024, 14470 : 76 - 89
  • [7] Object Detection Based on Hard Examples Mining Using Residual Network
    Chao, Zhang
    Ying, Chen
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (10)
  • [8] Enhancing Rare Object Detection in AI: Leveraging Synthetic Data for Improved Model Training
    Claiborne, Jesse
    Brown, Tivon
    Rodriguez, Paul
    Bhattacharya, Sambit
    SOUTHEASTCON 2024, 2024, : 56 - 60
  • [9] ENHANCING FAKE PRODUCT DETECTION USING DEEP LEARNING OBJECT DETECTION MODELS
    Daoud, Eduard
    Vu, Dang
    Nguyen, Hung
    Gaedke, Martin
    IADIS-INTERNATIONAL JOURNAL ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2020, 15 (01): : 13 - 24
  • [10] SYNTHETIC TRAINING IN OBJECT DETECTION
    Khalil, Osama
    Fathy, Mohammed E.
    El Kholy, Dina Khalil
    El Saban, Motaz
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3113 - 3117