STRONG A-INFINITY WEIGHTS AND SOBOLEV CAPACITIES IN METRIC MEASURE SPACES

被引:0
|
作者
Costea, Serban [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2009年 / 35卷 / 04期
关键词
Strong A-infinity weights; Newtonian spaces; Poincare inequality; Sobolev capacity; LIPSCHITZ FUNCTIONS; INEQUALITIES; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies strong A-infinity weights in Ahlfors Q-regular unbounded and geodesic metric measure spaces satisfying a weak (1, s) Poincare inequality for some s in (1, Q] : For a fixed s in ( Q - 1, Q]; it is shown that a function u yields a strong A-infinity weight of the form w = exp (Qu) whenever the minimal s-weak upper gradient of u has sufficiently small Morrey s norm.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 50 条
  • [21] Embeddings of the fractional Sobolev spaces on metric-measure spaces
    Gorka, Przemyslaw
    Slabuszewski, Artur
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [22] Musielak-Orlicz-Sobolev spaces on metric measure spaces
    Takao Ohno
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2015, 65 : 435 - 474
  • [23] HARDY-SOBOLEV INEQUALITIES AND WEIGHTED CAPACITIES IN METRIC SPACES
    Ihnatsyeva, Lizaveta
    Lehrback, Juha
    Vahakangas, Antti V.
    MATHEMATICA SCANDINAVICA, 2022, 128 (03) : 611 - 633
  • [24] Sobolev embeddings in metric measure spaces with variable dimension
    Petteri Harjulehto
    Peter Hästö
    Visa Latvala
    Mathematische Zeitschrift, 2006, 254 : 591 - 609
  • [25] Compactness of embeddings of sobolev type on metric measure spaces
    Ivanishko, I. A.
    Krotov, V. G.
    MATHEMATICAL NOTES, 2009, 86 (5-6) : 775 - 788
  • [26] Sobolev embeddings in metric measure spaces with variable dimension
    Harjulehto, Petteri
    Hasto, Peter
    Latvala, Visa
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (03) : 591 - 609
  • [27] Sobolev and bounded variation functions on metric measure spaces
    Ambrosio, Luigi
    Ghezzi, Roberta
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 211 - 273
  • [28] SOBOLEV CAPACITY AND HAUSDORFF MEASURES IN METRIC MEASURE SPACES
    Costea, Serban
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (01) : 179 - 194
  • [29] Compactness of embeddings of sobolev type on metric measure spaces
    I. A. Ivanishko
    V. G. Krotov
    Mathematical Notes, 2009, 86 : 775 - 788
  • [30] Sobolev, BV and perimeter extensions in metric measure spaces
    Caputo, Emanuele
    Koivu, Jesse
    Rajala, Tapio
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 135 - 165