Sobolev embeddings in metric measure spaces with variable dimension

被引:0
|
作者
Petteri Harjulehto
Peter Hästö
Visa Latvala
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] University of Oulu,Department of Mathematical Sciences
[3] University of Joensuu,Department of Mathematics
来源
Mathematische Zeitschrift | 2006年 / 254卷
关键词
Variable exponent; variable dimension; Hausdorff measure; Lebesgue space; Riesz potential; Hajłasz space; metric measure space; Primary: 46E35; Secondary: 28A78; 28A80; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study metric measure spaces with variable dimension. We consider Lebesgue spaces on these sets, and embeddings of the Riesz potential in these spaces. We also investigate Hajłasz-type Sobolev spaces, and prove Sobolev and Trudinger inequalities with optimal exponents. All of these questions lead naturally to function spaces with variable exponents.
引用
收藏
页码:591 / 609
页数:18
相关论文
共 50 条