STRONG A-INFINITY WEIGHTS AND SOBOLEV CAPACITIES IN METRIC MEASURE SPACES

被引:0
|
作者
Costea, Serban [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2009年 / 35卷 / 04期
关键词
Strong A-infinity weights; Newtonian spaces; Poincare inequality; Sobolev capacity; LIPSCHITZ FUNCTIONS; INEQUALITIES; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies strong A-infinity weights in Ahlfors Q-regular unbounded and geodesic metric measure spaces satisfying a weak (1, s) Poincare inequality for some s in (1, Q] : For a fixed s in ( Q - 1, Q]; it is shown that a function u yields a strong A-infinity weight of the form w = exp (Qu) whenever the minimal s-weak upper gradient of u has sufficiently small Morrey s norm.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 50 条