Radio-frequency Dark Photon Dark Matter across the Sun

被引:22
|
作者
An, Haipeng [1 ,2 ]
Huang, Fa Peng [3 ,4 ,5 ,6 ]
Liu, Jia [7 ,8 ,9 ]
Xue, Wei [10 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China
[3] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[4] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
[5] Sun Yat Sen Univ, TianQin Res Ctr Gravitat Phys, Zhuhai Campus, Zhuhai 519082, Peoples R China
[6] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[7] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[8] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[9] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[10] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
COSMIC AXIONS; CONSTRAINTS; PARTICLES; EMISSION; SEARCH; LIGHT;
D O I
10.1103/PhysRevLett.126.181102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dark photon as an ultralight dark matter candidate can interact with the standard model particles via kinetic mixing. We propose to search for the ultralight dark photon dark matter using radio telescopes with solar observations. The dark photon dark matter can efficiently convert into photons in the outermost region of the solar atmosphere, the solar corona, where the plasma mass of photons is close to the dark photon rest mass. Because of the strong resonant conversion and benefiting from the short distance between the Sun and the Earth, the radio telescopes can lead the dark photon search sensitivity in the mass range of 4 x 10(-8)-4 x 10(-6) eV, corresponding to the frequency 10-1000 MHz. As a promising example, the low-frequency array telescope can reach the kinetic mixing epsilon similar to 10(-13) (10(-14)) within 1 (100) h of solar observations. The future experiment square kilometer array phase 1 can reach epsilon similar to 10(-16)-10(-14) with 1 h of solar observations.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Dark photon dark matter produced by axion oscillations
    Co, Raymond T.
    Pierce, Aaron
    Zhang, Zhengkang
    Zhao, Yue
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [42] MeV dark matter complementarity and the dark photon portal
    Dutra, Maira
    Lindner, Manfred
    Profumo, Stefano
    Queiroz, Farinaldo S.
    Rodejohann, Werner
    Siqueira, Clarissa
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03):
  • [43] Dark photon Dark Matter without Stueckelberg mass
    Michele Redi
    Andrea Tesi
    Journal of High Energy Physics, 2022
  • [44] Dark photon dark matter from charged inflaton
    Firouzjahi, Hassan
    Gorji, Mohammad Ali
    Mukohyama, Shinji
    Salehian, Borna
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
  • [45] Maglev for dark matter: Dark-photon and axion dark matter sensing with levitated superconductors
    Higgins, Gerard
    Kalia, Saarik
    Liu, Zhen
    PHYSICAL REVIEW D, 2024, 109 (05)
  • [46] Indirect Search for Dark Matter in the Sun
    Rott, Carsten
    CETUP 2015 - WORKSHOP ON DARK MATTER, NEUTRINO PHYSICS AND ASTROPHYSICS & PPC 2015 - IXTH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY, 2016, 1743
  • [47] The distribution of inelastic dark matter in the Sun
    Mattias Blennow
    Stefan Clementz
    Juan Herrero-Garcia
    The European Physical Journal C, 2018, 78
  • [48] Dark photon relic dark matter production through the dark axion portal
    Kaneta, Kunio
    Lee, Hye-Sung
    Yun, Seokhoon
    PHYSICAL REVIEW D, 2017, 95 (11)
  • [49] Capture of inelastic Dark Matter in the sun
    Nussinov, Shmuel
    Wang, Lian-Tao
    Yavin, Itay
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (08):
  • [50] The distribution of inelastic dark matter in the Sun
    Blennow, Mattias
    Clementz, Stefan
    Herrero-Garcia, Juan
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (05):