Radio-frequency Dark Photon Dark Matter across the Sun

被引:22
|
作者
An, Haipeng [1 ,2 ]
Huang, Fa Peng [3 ,4 ,5 ,6 ]
Liu, Jia [7 ,8 ,9 ]
Xue, Wei [10 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China
[3] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[4] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
[5] Sun Yat Sen Univ, TianQin Res Ctr Gravitat Phys, Zhuhai Campus, Zhuhai 519082, Peoples R China
[6] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[7] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[8] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[9] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[10] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
COSMIC AXIONS; CONSTRAINTS; PARTICLES; EMISSION; SEARCH; LIGHT;
D O I
10.1103/PhysRevLett.126.181102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dark photon as an ultralight dark matter candidate can interact with the standard model particles via kinetic mixing. We propose to search for the ultralight dark photon dark matter using radio telescopes with solar observations. The dark photon dark matter can efficiently convert into photons in the outermost region of the solar atmosphere, the solar corona, where the plasma mass of photons is close to the dark photon rest mass. Because of the strong resonant conversion and benefiting from the short distance between the Sun and the Earth, the radio telescopes can lead the dark photon search sensitivity in the mass range of 4 x 10(-8)-4 x 10(-6) eV, corresponding to the frequency 10-1000 MHz. As a promising example, the low-frequency array telescope can reach the kinetic mixing epsilon similar to 10(-13) (10(-14)) within 1 (100) h of solar observations. The future experiment square kilometer array phase 1 can reach epsilon similar to 10(-16)-10(-14) with 1 h of solar observations.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Dark photon superradiance quenched by dark matter
    Cannizzaro, Enrico
    Sberna, Laura
    Caputo, Andrea
    Pani, Paolo
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [22] DARK MATTER NEAR THE SUN
    BAHCALL, JN
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 320 (1556): : 543 - 551
  • [23] Asymmetric Dark Matter and the Sun
    Frandsen, Mads T.
    Sarkar, Subir
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [25] First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter
    Le Hoang Nguyen
    Lobanov, Andrei
    Horns, Dieter
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (10):
  • [26] Adiabatic conversion of ALPs into dark photon dark matter
    Edward Broadberry
    Saurav Das
    Anson Hook
    Gustavo Marques-Tavares
    Journal of High Energy Physics, 2025 (3)
  • [27] Dark photon dark matter from a rolling inflaton
    Bastero-Gil, Mar
    Santiago, Jose
    Vega-Morales, Roberto
    Ubaldi, Lorenzo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (02):
  • [28] Quasi-degenerate dark photon and dark matter
    Zhou, Hang
    NUCLEAR PHYSICS B, 2024, 1000
  • [29] Composite asymmetric dark matter with a dark photon portal
    Ibe, Masahiro
    Kamada, Ayuki
    Kobayashi, Shin
    Nakano, Wakutaka
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [30] Distortion of neutrino oscillations by dark photon dark matter
    Alonso-Alvarez, Gonzalo
    Bleau, Katarina
    Cline, James M.
    PHYSICAL REVIEW D, 2023, 107 (05)