Radio-frequency Dark Photon Dark Matter across the Sun

被引:22
|
作者
An, Haipeng [1 ,2 ]
Huang, Fa Peng [3 ,4 ,5 ,6 ]
Liu, Jia [7 ,8 ,9 ]
Xue, Wei [10 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China
[3] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[4] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
[5] Sun Yat Sen Univ, TianQin Res Ctr Gravitat Phys, Zhuhai Campus, Zhuhai 519082, Peoples R China
[6] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[7] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[8] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[9] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China
[10] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
COSMIC AXIONS; CONSTRAINTS; PARTICLES; EMISSION; SEARCH; LIGHT;
D O I
10.1103/PhysRevLett.126.181102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dark photon as an ultralight dark matter candidate can interact with the standard model particles via kinetic mixing. We propose to search for the ultralight dark photon dark matter using radio telescopes with solar observations. The dark photon dark matter can efficiently convert into photons in the outermost region of the solar atmosphere, the solar corona, where the plasma mass of photons is close to the dark photon rest mass. Because of the strong resonant conversion and benefiting from the short distance between the Sun and the Earth, the radio telescopes can lead the dark photon search sensitivity in the mass range of 4 x 10(-8)-4 x 10(-6) eV, corresponding to the frequency 10-1000 MHz. As a promising example, the low-frequency array telescope can reach the kinetic mixing epsilon similar to 10(-13) (10(-14)) within 1 (100) h of solar observations. The future experiment square kilometer array phase 1 can reach epsilon similar to 10(-16)-10(-14) with 1 h of solar observations.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Direct detection constraints on dark photon dark matter
    An, Haipeng
    Pospelov, Maxim
    Pradler, Josef
    Ritz, Adam
    PHYSICS LETTERS B, 2015, 747 : 331 - 338
  • [32] Dark photon dark matter in the presence of inhomogeneous structure
    Witte, Samuel J.
    Rosauro-Alcaraz, Salvador
    McDermott, Samuel D.
    Poulin, Vivian
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [33] Light dark photon dark matter from inflation
    Nakai, Yuichiro
    Namba, Ryo
    Wang, Ziwei
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [34] Composite asymmetric dark matter with a dark photon portal
    Masahiro Ibe
    Ayuki Kamada
    Shin Kobayashi
    Wakutaka Nakano
    Journal of High Energy Physics, 2018
  • [35] Light dark photon dark matter from inflation
    Yuichiro Nakai
    Ryo Namba
    Ziwei Wang
    Journal of High Energy Physics, 2020
  • [36] Dark photon dark matter from charged inflaton
    Hassan Firouzjahi
    Mohammad Ali Gorji
    Shinji Mukohyama
    Borna Salehian
    Journal of High Energy Physics, 2021
  • [37] Dark photon dark matter from an oscillating dilaton
    Adshead, Peter
    Lozanov, Kaloian D.
    Weiner, Zachary J.
    PHYSICAL REVIEW D, 2023, 107 (08)
  • [38] Cosmological evolution of light dark photon dark matter
    McDermott, Samuel D.
    Witte, Samuel J.
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [39] Dark photon Dark Matter without Stueckelberg mass
    Redi, Michele
    Tesi, Andrea
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (10)
  • [40] Peaky production of light dark photon dark matter
    Nakai, Yuichiro
    Namba, Ryo
    Obata, Ippei
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (08):